Bài 5 trang 84 SGK Hình học 10

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Lập phương trình của đường tròn tiếp xúc với các trục tọa độ và có tâm ở trên đường thẳng \(d : 4x – 2y – 8 = 0.\)

Hướng dẫn giải

+) Gọi tọa độ tâm \(I\) của đường tròn dựa vào đường thẳng \(d.\)

+) Đường tròn tiếp xúc với các trục tọa độ nên: \(R = d\left( {I;\;Ox} \right) = d\left( {I;\;Oy} \right) \)\(\Leftrightarrow R = \left| {{x_I}} \right| = \left| {{y_I}} \right|.\)

Lời giải chi tiết

Vì đường tròn cần tìm tiếp xúc với hai trục tọa độ nên các tọa độ \(x_I; \,y_I\) của tâm \(I\) có thể là \(x_I=y_I\) hoặc \(x_I=-y_I\)

Đặt \(x_I=a\) thì ta có hai trường hợp \(I(a ; a)\) hoặc \(I(a ; -a)\). Ta có hai khả năng:

+) TH1: \(I(a; \, a)\):

Vì \(I\) nằm trên đường thẳng \(4x – 2y – 8 = 0\) nên tọa độ \(I(a ; a)\) là nghiệm đúng của phương trình đường thẳng \(4x – 2y – 8 = 0\), ta có:

\(4a – 2a – 8 = 0 \Rightarrow a = 4\)

Đường tròn cần tìm có tâm \(I(4; 4)\) và bán kính \(R = 4\) có phương trình là:

 \({(x - 4)^2} + {(y - 4)^2} = {4^2} \)\(\Leftrightarrow {(x - 4)^2} + {(y - 4)^2} = 16\)

+) TH2: \(I(a; -a)\): Khi đó ta có:

\(4a + 2a - 8 = 0  \Rightarrow a = \frac{4}{3}\)

Ta được đường tròn có phương trình là:

\((x -\frac{4}{3})^{2}+ (y +\frac{4}{3})^{2}= (\frac{4}{3})^{2}\)

\( \Leftrightarrow {\left( {x - {4 \over 3}} \right)^2} + {\left( {y + {4 \over 3}} \right)^2} = {{16} \over 9}\)

Vậy có hai đường tròn thỏa mãn đề bài.

Copyright © 2021 HOCTAP247