Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Giải và biện luận các phương trình (m, a và k là tham số)

a) \(|mx – x + 1| = |x + 2|\)

b) \({a \over {x + 2}} + {1 \over {x - 2a}} = 1\)

c) \({{mx - m - 3} \over {x + 1}} = 1\)

d) \({{3x + k} \over {x - 3}} = {{x - k} \over {x + 3}}\)

Hướng dẫn giải

a) Ta có:

\(|mx – x + 1| = |x + 2|\)

\( \Leftrightarrow \left[ \matrix{
mx - x + 1 = x + 2 \hfill \cr
mx - x + 1 = - x - 2 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
(m - 2)x = 1 \hfill \cr
mx = - 3 \hfill \cr} \right.\)

+ Với m = 2; \(S = {\rm{\{  - }}{3 \over 2}{\rm{\} }}\)

+ Với m = 0; \(S = {\rm{\{ }} - {1 \over 2}{\rm{\} }}\)

+ Với m ≠ 0 và m ≠ 2; \(S = {\rm{\{ }}{1 \over {m - 2}}; - {3 \over m}{\rm{\} }}\)

b) Điều kiện: x ≠  2 và x ≠ 2a

Ta có:

\(\eqalign{
& {a \over {x - 2}} + {1 \over {x - 2a}} = 1 \cr&\Leftrightarrow a(x - 2a) + x - 2 = (x - 2)(x - 2a) \cr
& \Leftrightarrow {x^2} - 3(a + 1)x + 2{(a + 1)^2} = 0 \cr} \)

Δ = 9(a + 1)2 – 8(a + 1)2 = (a + 1)2

Phương trình có hai nghiệm là:

\(\left\{ \matrix{
{x_1} = {{3(a + 1) + a + 1} \over 2} = 2a + 2 \hfill \cr
{x_2} = {{3(a + 1) - (a + 1)} \over 2} = a + 1 \hfill \cr} \right.\)

Kiểm tra điều kiện:

\(\eqalign{
& \left\{ \matrix{
{x_1} \ne 2 \hfill \cr
{x_1} \ne 2a \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2a + 2 \ne 2 \hfill \cr
2a + 2 \ne 2a \hfill \cr} \right. \cr&\Leftrightarrow \left\{ \matrix{
a \ne 0 \hfill \cr
2 \ne 0 \hfill \cr} \right. \Leftrightarrow a \ne 0 \cr
& \left\{ \matrix{
{x_2} \ne 2 \hfill \cr
{x_2} \ne 2a \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
a + 1 \ne 2 \hfill \cr
a + 1 \ne 2a \hfill \cr} \right. \Leftrightarrow a \ne 1 \cr} \) 

Vậy: a = 0 thì S = {1}

         a = 1 thì S = {4}

         a ≠ 0 và a ≠ 1 thì S = {2a + 2; a + 1}

c) Điều kiện: x ≠ -1 thì phương trình tương đương với:

mx – m – 3 = x + 1 ⇔ (m – 1)x = m + 4    (1)

+ Nếu m = 1 thì 0x = 5 phương trình vô nghiệm

+ Nếu m ≠ 1 thì (1) có nghiệm \(x = {{m + 4} \over {m - 1}}\)

\(x = {{m + 4} \over {m - 1}}\) là nghiệm của phương trình đã cho :

\( \Leftrightarrow {{m + 4} \over {m - 1}} \ne  - 1 \Leftrightarrow m + 4 \ne  - m + 1 \Leftrightarrow m \ne  - {3 \over 2}\)

Vậy:

\(\eqalign{
& i)\left\{ \matrix{
m \ne - {3 \over 2} \hfill \cr
m \ne 1 \hfill \cr} \right.\,\,\,\,\,:\,\,S = {\rm{\{ }}{{m + 4} \over {m - 1}}{\rm{\} }} \cr
& ii)\left[ \matrix{
m = - {3 \over 2} \hfill \cr
m = 1 \hfill \cr} \right.\,\,\,\,\,\,:\,\,\,\,S = \emptyset \cr} \)

d) Điều kiện: x ≠  ±3

Ta có:

\(\eqalign{
& {{3x + k} \over {x - 3}} = {{x - k} \over {x + 3}} \cr&\Leftrightarrow (3x + k)(x + 3) = (x - k)(x - 3) \cr
& \Leftrightarrow {x^2} + (k + 6)x = 0 \Leftrightarrow \left[ \matrix{
x = 0\,\,\,\,(\text{thỏa mãn}) \hfill \cr
x = - k - 6 \hfill \cr} \right. \cr} \) 

Kiểm tra điều kiện:

\(\left\{ \matrix{
x \ne 3 \hfill \cr
x \ne - 3 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
- k - 6 \ne 3 \hfill \cr
- k - 6 \ne - 3 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
k \ne - 9 \hfill \cr
k \ne - 3 \hfill \cr} \right.\)

Vậy: k = -3 hoặc k = -9 thì S = {0}

         k ≠ -3 hoặc k ≠ -9 thì S = {0, -k, -6}

Copyright © 2021 HOCTAP247