Bài 1 trang 17 SGK Đại số và Giải tích 11

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 1. Hãy xác định các giá trị của \(x\) trên đoạn \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\) để hàm số \(y = tanx\) ;

a) Nhận giá trị bằng \(0\) ;

b) Nhận giá trị bằng \(1\) ;  

c) Nhận giá trị dương ;

d) Nhận giá trị âm.  

Hướng dẫn giải

a) Dựa vào đồ thị hàm số \(y = \tan x\) (SGK - 12), xác định trên khoảng \(\left[ { - \pi ;\frac{{3\pi }}{2}} \right]\) đồ thị hàm số cắt trục hoành tại những điểm nào?

b) Dựa vào đồ thị hàm số \(y = \tan x\) (SGK - 12), xác định trên khoảng \(\left[ { - \pi ;\frac{{3\pi }}{2}} \right]\) đồ thị hàm số cắt đường thẳng \(y=1\) tại những điểm nào?

c) Dựa vào đồ thị hàm số \(y = \tan x\) (SGK - 12), xác định trên khoảng \(\left[ { - \pi ;\frac{{3\pi }}{2}} \right]\) có những khoảng nào mà đồ thị hàm số nằm phía trên trục hoành.

d) Dựa vào đồ thị hàm số \(y = \tan x\) (SGK - 12), xác định trên khoảng \(\left[ { - \pi ;\frac{{3\pi }}{2}} \right]\) có những khoảng nào mà đồ thị hàm số nằm phía dưới trục hoành.

Lời giải chi tiết

a) Trục hoành cắt đoạn đồ thị \(y = tanx\) (ứng với \(x \in\) \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\)) tại ba điểm có hoành độ - π ; 0 ; π. Do đó trên đoạn \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\) chỉ có ba giá trị của \(x\) để hàm số \(y = tanx\) nhận giá trị bằng \(0\), đó là \(x = - π; x = 0 ; x = π\).

b) Đường thẳng \(y = 1\) cắt đoạn đồ thị \(y = tanx\) (ứng với \(x\in\)\(\left[ { - \pi ;{{3\pi } \over 2}} \right]\)) tại ba điểm có hoành độ \({\pi  \over 4};{\pi  \over 4} \pm \pi \) . Do đó trên đoạn \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\) chỉ có ba giá trị của \(x\) để hàm số \(y = tanx\) nhận giá trị bằng \(1\), đó là \(x =  - {{3\pi } \over 4};\,\,x = {\pi  \over 4};\,\,x = {{5\pi } \over 4}\).

c) Phần phía trên trục hoành của đoạn đồ thị \(y = tanx\) (ứng với \(x \in\) \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\)) gồm các điểm của đồ thị có hoành độ truộc một trong các khoảng \(\left( { - \pi ; - {\pi  \over 2}} \right)\); \(\left( {0;{\pi  \over 2}} \right)\); \(\left( {\pi ;{{3\pi } \over 2}} \right)\). Vậy trên đoạn \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\) , các giá trị của \(x\) để hàm số \(y = tanx\) nhận giá trị dương là \(x \in \left( { - \pi ; - {\pi  \over 2}} \right) \cup \left( {0;{\pi  \over 2}} \right) \cup \left( {\pi ;{{3\pi } \over 2}} \right)\).

d) Phần phía dưới trục hoành của đoạn đồ thị \(y = tanx\) (ứng với \(x \in\) \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\)) gồm các điểm của đồ thị có hoành độ thuộc một trong các khoảng \(\left( { - {\pi  \over 2};0} \right),\left( {{\pi  \over 2};\pi } \right)\). Vậy trên đoạn \(\left[ { - \pi ;{{3\pi } \over 2}} \right]\) , các giá trị của \(x\) để hàm số \(y = tanx\) nhận giá trị âm là \(x \in \left( { - {\pi  \over 2};0} \right),\left( {{\pi  \over 2};\pi } \right)\)

Copyright © 2021 HOCTAP247