Bài 3 trang 29 SGK Hình học 11

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Chứng minh rằng khi thực hiện liên tiếp hai phép vị tự tâm \(O\) sẽ được một phép vị tự tâm \(O\)

Hướng dẫn giải

Sử dụng khái niệm phép vị tự: Phép vị tự tâm I tỉ số k biến M thành điểm M' \( \Rightarrow \overrightarrow {IM'}  = k\overrightarrow {IM} \).

Lời giải chi tiết

Với mỗi điểm \(M\), gọi \(M'\) = \({V_{(O,k)}}(M)\), \(M''={V_{(O,p)}}(M')\). Khi đó: \(\overrightarrow{OM'}\) = \(k \overrightarrow{OM}\) , \(\overrightarrow{OM''}\) = \(p\overrightarrow{OM'}\) = \(pk\overrightarrow{OM}\). Từ đó suy ra \(M''= {V_{(O,pk)}} (M)\).

Vậy thực hiện liên tiếp hai phép vị tự \({V_{(O,k)}}^{}\) và \({V_{(O,p)}}^{}\) sẽ được phép vị tự \({V_{(O,pk)}}^{}\).

Copyright © 2021 HOCTAP247