Câu 23 trang 31 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 23. Tìm tập xác định của mỗi hàm số sau :

a.  \(y = {{1 - \cos x} \over {2\sin x + \sqrt 2 }}\)

b.  \(y = {{\sin \left( {x - 2} \right)} \over {\cos 2x - \cos x}}\)

c.  \(y = {{\tan x} \over {1 + \tan x}}\)

d.  \(y = {1 \over {\sqrt 3 \cot 2x + 1}}\)

Hướng dẫn giải

a.\(y = {{1 - \cos x} \over {2\sin x + \sqrt 2 }}\) xác định  \( \Leftrightarrow 2\sin x + \sqrt 2 \ne 0\)

\( \Leftrightarrow \sin x \ne - {{\sqrt 2 } \over 2} \Leftrightarrow \left\{ {\matrix{{x \ne - {\pi \over 4} + k2\pi } \cr {x \ne {{5\pi } \over 4} + k2\pi } \cr} } \right.\)                                                

Vậy tập xác định của hàm số đã cho là :

\(D =\mathbb R \backslash  \left( {\left\{ { - {\pi \over 4} + k2\pi ,k \in\mathbb Z} \right\} \cup \left\{ {{{5\pi } \over 4} + k2\pi ,k \in\mathbb Z} \right\}} \right)\)

b/ \(y = {{\sin \left( {x - 2} \right)} \over {\cos 2x - \cos x}}\) xác định

\(\eqalign{& \Leftrightarrow \cos 2x \ne \cos x \cr & \Leftrightarrow \left\{ {\matrix{{2x \ne x + k2\pi } \cr {2x \ne - x + k2\pi } \cr} } \right. \Leftrightarrow \left\{ {\matrix{{x \ne k2\pi } \cr {2x \ne k{{2\pi } \over 3}} \cr} } \right. \Leftrightarrow x \ne k{{2\pi } \over 3} \cr} \) 

Vậy \(D =\mathbb R \backslash  \left\{ {k{{2\pi } \over 3},k \in\mathbb Z} \right\}\)

c/ \(y = {{\tan x} \over {1 + \tan x}}\) xác định  \( \Leftrightarrow \tan x \ne - 1 \Leftrightarrow \left\{ {\matrix{{x \ne {\pi \over 2} + k\pi } \cr {x \ne - {\pi \over 4} + k\pi } \cr} } \right.\)

Vậy  \(D =\mathbb R \backslash  \left( {\left\{ {{\pi \over 2} + k\pi ,k \in\mathbb Z} \right\} \cup \left\{ { - {\pi \over 4} + k\pi ,k \in\mathbb Z} \right\}} \right)\)

d/ \(y = {1 \over {\sqrt 3 \cot 2x + 1}}\) xác định  \( \Leftrightarrow \cot 2x \ne - {1 \over {\sqrt 3 }}\)

\( \Leftrightarrow \left\{ {\matrix{{2x \ne k\pi } \cr {2x \ne - {\pi \over 3} + k\pi } \cr} } \right. \Leftrightarrow \left\{ {\matrix{{x \ne k{\pi \over 2}} \cr {x \ne - {\pi \over 6} + k{\pi \over 2}} \cr} } \right.\)

Vậy \(D =\mathbb R \backslash  \left( {\left\{ {k{\pi \over 2},k \in\mathbb Z} \right\} \cup \left\{ { - {\pi \over 6} + k{\pi \over 2},k \in\mathbb Z} \right\}} \right)\)

Copyright © 2021 HOCTAP247