Bài 89 trang 131 SGK giải tích 12 nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 89. Chứng minh rằng hàm số \(y = \ln {1 \over {1 + x}}\) thỏa mãn hệ thức \(xy' + 1 = {e^y}\)

Hướng dẫn giải

Điều kiện: \(x > -1\). Ta có \(y =  - \ln \left( {1 + x} \right) \Rightarrow y' =  - {1 \over {1 + x}}\)

Khi đó: \(xy' + 1 = {{ - x} \over {1 + x}} + 1 = {1 \over {1 + x}} = {e^{\ln {1 \over {1 + x}}}} = {e^y}\)

Vậy \(xy' + 1 = {e^y}\)

Copyright © 2021 HOCTAP247