Bài 26 trang 102 SGK Hình học 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 26. Viết phương trình hình chiếu vuông góc của đường thẳng \(d:\,\,{{x - 1} \over 2} = {{y + 2} \over 3} = {{z - 3} \over 1}\) trên mỗi mặt phẳng tọa độ.

Hướng dẫn giải

Đường thẳng d có phương trình tham số là:

\(\left\{ \matrix{
x = 1 + 2t \hfill \cr
y = - 2 + 3t \hfill \cr
z = 3 + t \hfill \cr} \right.\)

Mỗi điểm M(x; y; z) \( \in d\) có hình chiếu trên mp(Oxy) là điểm M’(x; y; 0) , d’ là hình chiếu của d trên mp(Oxy). Vậy d’ có phương trình tham số là

\(\left\{ \matrix{
x = 1 +2 t \hfill \cr
y = - 2 + 3t \hfill \cr
z = 0 \hfill \cr} \right.\)

Tương tự phương trình hình chiếu của d trên mp(Oxz), mp(Oyz) lần lượt là:

\(\left\{ \matrix{
x = 1 + 2t \hfill \cr
y = 0 \hfill \cr
z = 3 + t \hfill \cr} \right.\) và 

\(\left\{ \matrix{
x = 0 \hfill \cr
y = - 2 + 3t \hfill \cr
z = 3 + t \hfill \cr} \right.\)

Copyright © 2021 HOCTAP247