Cho tam giác ABC có góc B = góc C = 40\(^0\). Gọi Ax là tia phân giác của góc ngoài đỉnh A. Hãy chứng tó Ax // BC.
Ta có : \(\widehat{CAD}=\widehat{B}+\widehat{C}=40^0+40^0=80^0\)
(góc ngoài của tam giác ABC) (1)
\(\widehat{A_1}=\widehat{A_2}=\dfrac{1}{2}\widehat{CAD}=\dfrac{80^0}{2}=40^0\)
(tính chất tia phân giác của góc) (2)
Từ (1) và (2) suy ra : \(\widehat{A_2}=\widehat{C}(=40^0)\)
=> Ax // BC (hai góc so le trong bằng nhau)
Copyright © 2021 HOCTAP247