Với hai số a và b không âm, ta có: \(\sqrt{a}.\sqrt{b}=\sqrt{ab}\)
Lưu ý: định lý trên có thể mở rộng đối với nhiều số không âm.
Muốn khai phương một tích của các số không âm, ta có thể khai phương từng thừa số rồi nhân các kết quả lại với nhau.
Muốn nhân các căn bậc hai của các số không âm, ta có thể nhân các số dưới dấu căn với nhau rồi khai phương kết quả đó.
Lưu ý: một cách tổng quát, với hai biểu thức A và B không âm, ta có: \(\sqrt{A}.\sqrt{B}=\sqrt{AB}\)
Bài 1: Áp dụng quy tắc khai phương một tích, hãy tính:
\(\sqrt{0,09.64}\) ; \(\sqrt{2^4.(-7)^2}\)
Hướng dẫn: Ta có \(\sqrt{0,09.64}=\sqrt{0,09}.\sqrt{64}=0,3.8=2,4\)
\(\sqrt{2^4.(-7)^2}=\sqrt{2^4}.\sqrt{(-7)^2}=4.7=28\)
Bài 2: Áp dụng quy tắc nhân, hãy tính:
\(\sqrt{7}.\sqrt{63}\) ; \(\sqrt{0,4}.\sqrt{6,4}\)
Hướng dẫn: Ta có: \(\sqrt{7}.\sqrt{63}=\sqrt{7.63}=\sqrt{7.7.3.3}=7.3=21\)
\(\sqrt{0,4}.\sqrt{6,4}=\sqrt{0,4.6,4}=\sqrt{0,04.64}=\sqrt{0,04}.\sqrt{64}=0,2.8=1,6\)
Bài 3: Rút gọn biểu thức \(\sqrt{a^4(3-a)^2}\) với \(a\geq 3\)
Hướng dẫn: \(\sqrt{a^4(3-a)^2}=a^2.|3-a|=a^2(a-3)\) vì \(a\geq 3\)
Bài 4: Khai phương tích 12.30.40
Hướng dẫn: \(\sqrt{12.30.40}=\sqrt{12.3.2.2.100}=6.2.10=120\)
Bài 5: Tính giá trị của \((2-\sqrt{3})(2+\sqrt{3})\)
Hướng dẫn:\((2-\sqrt{3})(2+\sqrt{3})=2^2-(\sqrt{3})^2=4-3=1\)
hoặc: \((2-\sqrt{3})(2+\sqrt{3})=2.2+2\sqrt{3}-2\sqrt{3}-\sqrt{3}.\sqrt{3}=1\)
Qua bài giảng Liên hệ giữa phép nhân và phép khai phương này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như :
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 9 Bài 3 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 9 Bài 3 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Toán 9 tập 1
Bài tập 17 trang 14 SGK Toán 9 Tập 1
Bài tập 18 trang 14 SGK Toán 9 Tập 1
Bài tập 19 trang 15 SGK Toán 9 Tập 1
Bài tập 20 trang 15 SGK Toán 9 Tập 1
Bài tập 21 trang 15 SGK Toán 9 Tập 1
Bài tập 22 trang 15 SGK Toán 9 Tập 1
Bài tập 23 trang 15 SGK Toán 9 Tập 1
Bài tập 24 trang 15 SGK Toán 9 Tập 1
Bài tập 25 trang 16 SGK Toán 9 Tập 1
Bài tập 26 trang 16 SGK Toán 9 Tập 1
Bài tập 27 trang 16 SGK Toán 9 Tập 1
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Copyright © 2021 HOCTAP247