Căn bậc ba của một số a là số x sao cho \(x^3=a\)
Mối số a bất kì đều có duy nhất một căn bậc ba.
Từ định nghĩa căn bậc ba, ta có \((\sqrt[3]{a})^3=\sqrt[3]{a^3}=a\)
Cũng có phần tương tự như căn bậc hai, chsung ta có các tính chất sau:
1. \(a < b \Leftrightarrow \sqrt[3]{a} < \sqrt[3]{b}\)
2. \(\sqrt[3]{ab}=\sqrt[3]{a}.\sqrt[3]{b}\)
3. Với \(b\neq 0\), ta có \(\sqrt[3]{\frac{a}{b}}=\frac{\sqrt[3]{a}}{\sqrt[3]{b}}\)
Bài 1: Tính các giá trị sau: \(\sqrt[3]{64}\) ; \(\sqrt[3]{-125}\) ; \(\sqrt[3]{729}\)
Hướng dẫn: \(\sqrt[3]{64}=\sqrt[3]{4^3}=4\)
\(\sqrt[3]{-125}=\sqrt[3]{(-5)^3}=-5\)
\(\sqrt[3]{729}=\sqrt[3]{9^3}=9\)
Bài 2: Rút gọn các biểu thức sau: \(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}\)
\(\sqrt{64}-\sqrt[3]{-8}-\sqrt[3]{729}\)
Hướng dẫn:\(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}=3+2-5=0\)
\(\sqrt{64}-\sqrt[3]{-8}-\sqrt[3]{729}=8+2-9=1\)
Bài 3: So sánh hai số sau: \(2.\sqrt[3]{3}\) và \(\sqrt[3]{25}\)
Hướng dẫn: Ta có \(2.\sqrt[3]{3}=\sqrt[3]{2^3.3}\sqrt[3]{24}<\sqrt[3]{25}\)
Vậy \(2.\sqrt[3]{3}<\sqrt[3]{25}\)
Bài 1:Tính giá trị biểu thức: \(\frac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}\)
Hướng dẫn: \(\frac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}\)
\(=\sqrt[3]{\frac{135}{5}}-\sqrt[3]{54.4}=\sqrt[3]{27}-\sqrt[3]{216}=3-6=-3\)
Bài 2:Tính giá trị biểu thức \((\sqrt[3]{4}-\sqrt[3]{10}+\sqrt[3]{25})(\sqrt[3]{2}+\sqrt[3]{5})\)
Hướng dẫn:
\((\sqrt[3]{4}-\sqrt[3]{10}+\sqrt[3]{25})(\sqrt[3]{2}+\sqrt[3]{5})\)
\(=\sqrt[3]{4}.\sqrt[3]{2}+\sqrt[3]{4}.\sqrt[3]{5}-\sqrt[3]{10}.\sqrt[3]{2}-\sqrt[3]{10}.\sqrt[3]{5}+\sqrt[3]{25}.\sqrt[3]{2}+\sqrt[3]{25}.\sqrt[3]{5}\)
\(=\sqrt[3]{8}+\sqrt[3]{20}-\sqrt[3]{20}-\sqrt[3]{50}+\sqrt[3]{50}+\sqrt[3]{125}\)
\(=2+5=7\)
<
Qua bài giảng Căn bậc ba này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như :
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 9 Bài 9 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 9 Bài 9 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Toán 9 tập 1
Bài tập 67 trang 36 SGK Toán 9 Tập 1
Bài tập 68 trang 36 SGK Toán 9 Tập 1
Bài tập 69 trang 36 SGK Toán 9 Tập 1
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Copyright © 2021 HOCTAP247