Điều kiện của m để phương trình \({x^2} - 2mx + {m^2} - 4 = 0\) có hai nghiệm \({x_1} = > 0\) là:

Câu hỏi :

Điều kiện của m để phương trình \({x^2} - 2mx + {m^2} - 4 = 0\) có hai nghiệm \({x_1} = 0,\,\,{x_2} > 0\) là:

A. \(m =  - 2\)       

B. \(m = 2\)

C. \(m =  \pm 2\)  

D. \(m = 16\)

* Đáp án

B

* Hướng dẫn giải

\({x^2} - 2mx + {m^2} - 4 = 0\)

\(\Delta ' = {m^2} - {m^2} + 4 = 4 > 0\) với mọi \(m \Rightarrow \) phương trình có hai nghiệm phân biệt với mọi \(m.\)

Ta có \({x_1} = 0,\,\,{x_2} > 0\) và theo định lý Vi-ét ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}{x_1} + {x_2} = 2m > 0\\{x_1}{x_2} = {m^2} - 4 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m > 0\\{m^2} = 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m > 0\\\left[ \begin{array}{l}m = 2\\m =  - 2\end{array} \right.\end{array} \right. \Leftrightarrow m = 2\end{array}\)

Vậy với \(m = 2\) thỏa mãn yêu cầu đề bài.

Chọn B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK2 môn Toán 9 năm 2021

Số câu hỏi: 200

Copyright © 2021 HOCTAP247