Cho \(a,b,c\) là các số thực dương thỏa mãn: \(ab + bc + ac = 3abc.\) Tìm giá trị nhỏ nhất của biểu = {{c^2} + {a^2}} \right)}} + {{a^2} + {b^2}} \right)}} \)\(\,+ {{b^2} + {c^2}}

Câu hỏi :

Cho \(a,b,c\) là các số thực dương thỏa mãn: \(ab + bc + ac = 3abc.\) Tìm giá trị nhỏ nhất của biểu thức:

A. \(\dfrac{3}{2}\)

B. \(\dfrac{2}{3}\)

C. \(\dfrac{5}{2}\)

D. \(\dfrac{2}{5}\)

* Đáp án

A

* Hướng dẫn giải

Có \(\dfrac{{{a^2}}}{{c({c^2} + {a^2})}} = \dfrac{{{a^2} + {c^2} - {c^2}}}{{c({c^2} + {a^2})}}\)\(\, = \dfrac{1}{c} - \dfrac{c}{{{c^2} + {a^2}}}\mathop  \ge \limits^{Cô-si} \dfrac{1}{c} - \dfrac{c}{{2\sqrt {{c^2}.\,\,{a^2}} }} \)\(\,= \dfrac{1}{c} - \dfrac{1}{{2a}}\)

\( \Rightarrow \dfrac{{{a^2}}}{{c({c^2} + {a^2})}} \ge \dfrac{1}{c} - \dfrac{1}{{2a}}\)

Và tương tự ta có:

\(\dfrac{{{b^2}}}{{a({a^2} + {b^2})}} \ge \dfrac{1}{a} - \dfrac{1}{{2b}}\)

\(\dfrac{{{c^2}}}{{c({c^2} + {b^2})}} \ge \dfrac{1}{b} - \dfrac{1}{{2c}}\)

\( \Rightarrow P \ge \left( {\dfrac{1}{c} - \dfrac{1}{{2a}}} \right) + \left( {\dfrac{1}{a} - \dfrac{1}{{2b}}} \right) \)\(\,+ \left( {\dfrac{1}{b} - \dfrac{1}{{2c}}} \right) = \dfrac{1}{2}\left( {\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}} \right) \)\(\,= \dfrac{{ab + bc + ca}}{{2abc}} = \dfrac{3}{2}\)

\( \Rightarrow \) GTNN của \(P\) là \(\dfrac{3}{2}\) \( \Leftrightarrow a = b = c = 1\).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK2 môn Toán 9 năm 2021

Số câu hỏi: 200

Copyright © 2021 HOCTAP247