A. \(S = \left\{ {\frac{{841}}{{144}}} \right\}.\)
B. \(S = \left\{ {\frac{{839}}{{144}}} \right\}.\)
C. \(S = \left\{ {\frac{{35}}{6}} \right\}.\)
D. \(S = \left\{ {\frac{{841}}{{149}}} \right\}.\)
A
Phương trình: \(\sqrt x + \sqrt {x + 7} + 2\sqrt {{x^2} + 7x} + 2x = 35\)
Điều kiện: \(x \ge 0.\)
Đặt \(\sqrt x + \sqrt {x + 7} = t\;\;\left( {t \ge \sqrt 7 } \right).\)
\(\begin{array}{l} \Rightarrow {t^2} = x + x + 7 + 2\sqrt {x\left( {x + 7} \right)} \Leftrightarrow 2x + 2\sqrt {{x^2} + 7x} = {t^2} - 7.\\ \Rightarrow PT \Leftrightarrow {t^2} + t - 42 = 0 \Leftrightarrow \left( {t + 7} \right)\left( {t - 6} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}t + 7 = 0\\t - 6 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = - 7\;\;\left( {ktm} \right)\\t = 6\;\;\left( {tm} \right)\end{array} \right.\\ \Rightarrow \sqrt x + \sqrt {x + 7} = 6 \Leftrightarrow 2x + 7 + 2\sqrt {{x^2} + 7x} = 36\\ \Leftrightarrow 2\sqrt {{x^2} + 7x} = 29 - 2x \Leftrightarrow \left\{ \begin{array}{l}29 - 2x \ge 0\\4\left( {{x^2} + 7x} \right) = {\left( {29 - 2x} \right)^2}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x \le \frac{{29}}{2}\\4{x^2} + 28x = 841 - 116x + 4{x^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le \frac{{29}}{2}\\144x = 841\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le \frac{{29}}{2}\\x = \frac{{841}}{{144}}\end{array} \right. \Rightarrow x = \frac{{841}}{{144}}.\end{array}\)
Vậy \(S = \left\{ {\frac{{841}}{{144}}} \right\}.\)
Chọn A.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247