Cho biểu thức
1) Tìm điều kiện xác định và rút gọn biểu thức P?
2) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên?
1) Điều kiện xác định \[\left\{ \begin{array}{l}x \ge 0\\x - \sqrt x \ne 0\\x + \sqrt x \ne 0\\x + 2 \ne 0\\x - 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\x \ne 0\\x \ne 1\\x \ne - 2\\x \ne 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\x \ne 1\\x \ne 2\end{array} \right.\]
Ta có: \[P = \left[ {\frac{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}{{\sqrt x \left( {\sqrt x - 1} \right)}} - \frac{{\left( {\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)}}{{\sqrt x \left( {\sqrt x + 1} \right)}}} \right]\,\,:\,\,\frac{{x + 2}}{{x - 2}}\]
\[ = \frac{{x + \sqrt x + 1 - x + \sqrt x - 1}}{{\sqrt x }}\,\,:\,\,\frac{{x + 2}}{{x - 2}} = \frac{{2\left( {x - 2} \right)}}{{x + 2}}\]
Vậy: \[P = \frac{{2\left( {x - 2} \right)}}{{x + 2}}\]
Cách 2:
Đặt \[a = \sqrt x \,\,\left( {a \ge 0} \right)\]
Ta có \[P = \left( {\frac{{{a^3} - 1}}{{{a^2} - a}} - \frac{{{a^3} + 1}}{{{a^2} + a}}} \right)\,\,:\,\,\frac{{{a^2} + 2}}{{{a^2} - 2}}\]
\[ = \left[ {\frac{{\left( {a - 1} \right)\left( {{a^2} + a + 1} \right)}}{{a\left( {a - 1} \right)}} - \frac{{\left( {a + 1} \right)\left( {{a^2} - a + 1} \right)}}{{a\left( {a + 1} \right)}}} \right].\frac{{{a^2} - 2}}{{{a^2} + 2}}\]
\[ = \left[ {\frac{{\left( {{a^2} + a + 1} \right) - \left( {{a^2} - a + 1} \right)}}{a}} \right].\frac{{{a^2} - 2}}{{{a^2} + 2}} = 2.\frac{{{a^2} - 2}}{{{a^2} + 2}} = 2.\frac{{x - 2}}{{x + 2}}\]
Nhận xét: Bài toán tìm điều kiện và rút gọn biểu thức áp dụng quy tắc tìm điều kiện và các phương pháp phân tích đa thức thành nhân tử.
2) Ta có: \[P = \frac{{2x - 4}}{{x + 2}} = \frac{{2x + 4 - 8}}{{x + 2}} = 2 - \frac{8}{{x + 2}}\]
Để P nhận giá trị nguyên khi và chỉ khi \[8 \vdots \left( {x + 2} \right)\]
\[ \Leftrightarrow \left[ \begin{array}{l}x + 2 = \pm 1\\x + 2 = \pm 2\\x + 2 = \pm 4\\x + 2 = \pm 8\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1;\,\,x = 3\\x = 0;\,\,x = - 4\\x = 2;\,\,x = - 6\\x = 6;\,\,x = - 10\end{array} \right.\]
Vậy \[x = 6\].
Nhận xét: Bài toàn tìm giá trị nguyên của biến để biểu thức nguyên bằng cách phân tích phần nguyên.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247