Cho đường tròn (O; R) đường kính AB. Kẻ tiếp tuyến Ax và lấy trên tiếp tuyến đó một điểm P sao cho AP > R, từ P kẻ tiếp tuyến tiếp xúc với (O) tại M.
1) Chứng minh rằng tứ giác APMO nội tiếp được một đường tròn.
2) Chứng minh BM // OP.
3) Đường thẳng vuông góc với AB ở O cắt tia BM tại N. Chứng minh tứ giác OBNP là hình bình hành.
4) Biết AN cắt OP tại K, PN cắt ON tại I; PN và OM kéo dài cắt nhau tại J. Chứng minh I, J, K thẳng hàng.
1) Ta có \[\widehat {PAO} + \widehat {PMO} = 90^\circ + 90^\circ = 180^\circ \] suy ra tứ giác APMO là tứ giác nội tiếp.
Nhận xét: Bài toán chứng minh một tứ giác là tứ giác nội tiếp bằng cách chứng minh tứ giác đó có tổng hai góc trong đối diện bằng 180°.
2) Ta có: \[\widehat {ABM} = \frac{{\widehat {AOM}}}{2}\] (góc nội tiếp và góc ở tâm) (1)
\[\widehat {AOP} = \frac{{\widehat {AOM}}}{2}\] (tính chất hai tiếp tuyến cắt nhau) (2)
Suy ra \[\widehat {ABM} = \widehat {AOP}\]. Do đó BM // OP
Nhận xét: Bài toán chứng minh hai đường thẳng song song bằng cách chứng minh hai góc ở vị trí đồng vị của hai đường thẳng đó bằng nhau.
3) Ta có ∆AOP = ∆OBN (g-c-g), suy ra \[OP = BN\].
Mà: BN // OP (do BM // OP)
Suy ra OBNP là hình bình hành.
Nhận xét: Bài toán chứng minh một tứ giác là hình bình hành bằng cách chỉ ra tứ giác đó có một cặp cạnh đối song song và bằng nhau.
4) Ta có: AONP là hình chữ nhật nên AP // NO suy ra \[\widehat {APO} = \widehat {NOP}\] (hai góc so le trong) (4)
\[\widehat {APO} = \widehat {MPO}\] (tính chất hai tiếp tuyến cắt nhau) (5)
Từ (4) và (5) suy ra ∆IPO cân tại I suy ra IK là trung tuyến (AONP là hình chữ nhất nên K là trung điểm của PO) nên IK cũng là đường cao hay \[IK \bot PO\] (*)
Ta có \[\left\{ \begin{array}{l}ON \bot PJ\\PM \bot OJ\\ON \cap PM = \left\{ I \right\}\end{array} \right.\] nên I là trực tâm của tam giác ∆POỊ nên \[IJ \bot OP\] (**).
Từ (*) và (**), suy ra ba điểm I, J, K thẳng hàng.
Nhận xét: Bài toán chứng minh ba điểm thẳng hàng ta chứng minh cho ba điểm đó cùng nằm trên một đường thẳng đặc biệt.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247