1) Xác định hàm số bậc nhất y = ax + b, biết rằng đồ thị hàm số đi qua điểm M(1; –1) và N(2; 1).
2) Cho phương trình: \[{x^2} - 2mx + {m^2} - m + 3 = 0\] (1), với m là tham số.
a) Giải phương trình (1) với m = 4.
b) Tìm các giá trị của m để phương trình (1) có hai nghiệm \[{x_1},\,\,{x_2}\]và biểu thức:
\[P = {x_1}{x_2} - {x_1} - {x_2}\]đạt giá trị nhỏ nhất.
1) Vì đồ thị hàm số đi qua điểm M(1; –1) nên \[a + b = - 1\]
đồ thị hàm số đi qua điểm N(2; 1) nên \[2a + b = 1\]
Yêu cầu bài toán \[ \Leftrightarrow \]\[\left\{ \begin{array}{l}a + b = - 1\\2a + b = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - 3\end{array} \right.\]
Vậy hàm số phải tìm là y = 2x – 3.
2)
a) Với m = 4, phương trình (1) trở thành: \[{x^2} - 8x + 15 = 0\]. Có \[\Delta = 1 > 0\]
Phương trình có hai nghệm phân biệt \[{x_1} = 3;\,\,{x_2} = 5;\]
b) Ta có: ∆' = \[{\left( { - m} \right)^2} - 1.\left( {{m^2} - m + 3} \right) = {m^2} - {m^2} + m - 3 = m - 3\].
Phương trình (1) có hai nghiệm \[{x_1},\,\,{x_2}\] khi ∆' \[ \ge \]0 \[ \Leftrightarrow \,m - 3 \ge 0 \Leftrightarrow m \ge 3\]
Với \[m \ge 3\], theo định lí Vi–ét ta có: \[\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1}.{x_2} = {m^2} - m + 3\end{array} \right.\]
Theo bài ra: \[P = {x_1}{x_2} - {x_1} - {x_2} = {x_1}{x_2} - ({x_1} + {x_2})\]
Áp đụng định lí Vi–ét ta được:
\[P = {m^2} - m + 3 - 2m = {m^2} - 3m + 3\,\,\,\,\, = m(m - 3) + 3\]
Vì \[m \ge 3\]nên \[m(m - 3) \ge 0\], suy ra \[P \ge 3\]. Dấu " = " xảy ra khi m = 3.
Vậy giá trị nhỏ nhất của P là 3 khi m = 3.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247