Cho x, y thỏa mãn: \[{x^2} + {y^2} - 4x - 2 = 0\]. Chứng minh rằng
Câu V:
Phương trình tương đương với: \[{x^2} + {y^2} = 4x + 2{\rm{ }}\left( 1 \right)\]
Ta có: \[{x^2} - 4x - 2 = - {y^2} \le 0 \Rightarrow \left( {x - \sqrt 6 - 2} \right)\left( {x + \sqrt 6 - 2} \right) \le 0\]
\[ \Leftrightarrow 2 - \sqrt 6 \le x \le 2 + \sqrt 6 \]
\[ \Leftrightarrow 10 - 4\sqrt 6 \le 4x + 2 \le 10 + 4\sqrt 6 {\rm{ }}\left( 2 \right)\]
Từ (1) và (2), suy ra: \[10 - 4\sqrt 6 \le {x^2} + {y^2} \le 10 + 4\sqrt 6 {\rm{ }}\].
Nhận xét: Bài toán áp dụng biến đổi tương đương một phương trình, giải bất phương trình bậc hai.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247