a) Giải phương trình: x^2 - 3x + 2 = 0. b) Tìm các giá trị của tham số m để phương trình x^2 - 2(m - 1)x + m^2 = 0 có hai nghiệm phân

Câu hỏi :

a) Giải phương trình: \({x^2} - 3x + 2 = 0\).

b) Tìm các giá trị của tham số m để phương trình \({x^2} - 2(m - 1)x + {m^2} = 0\) có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn hệ thức \({\left( {{x_1} - {x_2}} \right)^2} + 6m = {x_1} - 2{x_2}\).

* Đáp án

* Hướng dẫn giải

a)    \({x^2} - 3x + 2 = 0\)

Phương trình có dạng \(a + b + c = 0\). Khí đó pt có hai nghiệm phân biệt \({x_1} = 1;{x_2} = 2\).

Vậy tập nghiệm của phương trình là: \(S = \left\{ {1;2} \right\}\)

b)    \({x^2} - 2(m - 1)x + {m^2} = 0\)

Ta có: \(\Delta ' = {\left[ { - \left( {m - 1} \right)} \right]^2} - {m^2}\) \( = {m^2} - 2m + 1 - {m^2} = 1 - 2m\)

Phương trình có hai nghiệm phân biệt \({x_1},{x_2}\)\( \Leftrightarrow \Delta ' > 0 \Leftrightarrow 1 - 2m > 0 \Leftrightarrow m < \frac{1}{2}\)

Theo vi–ét ta có: \(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = 2\left( {m - 1} \right)}\\{{x_1}{x_2} = {m^2}}\end{array}} \right.\)

Theo đề bài ta có:

\({\left( {{x_1} - {x_2}} \right)^2} + 6m = {x_1} - 2{x_2}\)    \( \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} + 6m = {x_1} - 2{x_2}\)

\( \Leftrightarrow 4{\left( {m - 1} \right)^2} - 4{m^2} + 6m = {x_1} - 2{x_2}\)     \( \Leftrightarrow - 2m + 4 = {x_1} - 2{x_2}\)

Khi đó kết hợp với \({x_1} + {x_2} = 2\left( {m - 1} \right)\) ta có hệ pt:

\(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = 2\left( {m - 1} \right)}\\{{x_1} - 2{x_2} = - 2m + 4}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{3{x_2} = 4m - 6}\\{{x_1} + {x_2} = 2m - 2}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_2} = \frac{4}{3}m - 2}\\{{x_1} = 2m - 2 - \frac{4}{3}m + 2}\end{array} \Leftrightarrow } \right.\left\{ {\begin{array}{*{20}{c}}{{x_2} = \frac{4}{3}m - 2}\\{{x_1} = \frac{2}{3}m}\end{array}} \right.\)

Thay \(\left\{ {\begin{array}{*{20}{c}}{{x_2} = \frac{4}{3}m - 2}\\{{x_1} = \frac{2}{3}m}\end{array}} \right.\)vào \({x_1}{x_2} = {m^2}\) ta được:

\(\left( {\frac{4}{3}m - 2} \right).\frac{2}{3}m = {m^2} \Leftrightarrow \frac{{ - 1}}{9}{m^2} - \frac{4}{3}m = 0 \Leftrightarrow - m\left( {\frac{1}{9}m + \frac{4}{3}} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 0}\\{m = - 12}\end{array}} \right.\)(tm)

Vậy \(m = 0;m = - 12\) thỏa mãn yêu cầu đề bài.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề ôn thi vào 10 môn Toán có đáp án (Mới nhất) !!

Số câu hỏi: 45

Copyright © 2021 HOCTAP247