Cho biểu thức: \(P = \left( {\frac{1}{{x - \sqrt x }} + \frac{1}{{\sqrt x - 1}}} \right):\frac{{\sqrt x + 1}}{{{{\left( {\sqrt x - 1} \right)}^2}}}\).
1) Tìm điều kiện xác định và rút gọn biểu thức P?
2) Tìm tất cả các giá trị của x để \(P = \frac{1}{3}\)?
3) Tìm giá trị lớn nhất của biểu thức \(Q = A - 9\sqrt x \)?
1) Điều kiện xác định: \(\left\{ \begin{array}{l}x - \sqrt x \ne 0\\\sqrt x - 1 \ne 0\\x \ge 0\\\sqrt x + 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\x \ne 1\\x \ge 0\\\sqrt x \ne - 1\end{array} \right. \Leftrightarrow 0 < x \ne 1\)
Ta có: \(P = \left( {\frac{1}{{x - \sqrt x }} + \frac{1}{{\sqrt x - 1}}} \right).\frac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{\sqrt x + 1}}\)
\( = \left[ {\frac{1}{{x - \sqrt x }} + \frac{{\sqrt x }}{{\sqrt x \left( {\sqrt x - 1} \right)}}} \right].\frac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{\sqrt x + 1}}\)
\( = \frac{{1 + \sqrt x }}{{\sqrt x \left( {\sqrt x - 1} \right)}}.\frac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{\sqrt x + 1}} = \frac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{\sqrt x \left( {\sqrt x - 1} \right)}} = \frac{{\sqrt x - 1}}{{\sqrt x }}\)
Vậy \(P = \frac{{\sqrt x - 1}}{{\sqrt x }}\).
Cách 2: Đặt \(a = \sqrt x \) \(\left( {a \ge 0} \right)\)
Ta có: \(P = \left( {\frac{1}{{{a^2} - a}} + \frac{1}{{a - 1}}} \right):\frac{{a + 1}}{{{{\left( {a - 1} \right)}^2}}} = \left[ {\frac{1}{{a\left( {a - 1} \right)}} + \frac{1}{{a - 1}}} \right].\frac{{{{\left( {a - 1} \right)}^2}}}{{a + 1}}\)
\( = \left[ {\frac{{1 + a}}{{a\left( {a - 1} \right)}}} \right].\frac{{{{\left( {a - 1} \right)}^2}}}{{a + 1}} = \frac{{a - 1}}{a} = \frac{{\sqrt x - 1}}{{\sqrt x }}\).
Nhận xét: Bài toán tìm điều kiện và rút gọn áp dụng quy tắc tìm điều kiện và các phương pháp phân tích đa thức thành nhân tử.
2) Với \(P = \frac{1}{3} \Leftrightarrow \frac{{\sqrt x - 1}}{{\sqrt x }} = \frac{1}{3}\)
\( \Leftrightarrow 3\left( {\sqrt x - 1} \right) = \sqrt x \Leftrightarrow 2\sqrt x = 3 \Leftrightarrow x = \frac{9}{4}\) (thõa mãn).
Nhận xét: Bài toán tìm giá trị của biến để biểu thức nhận một giá trị cho trước.
3) Ta có \(Q = P - 9\sqrt x = \frac{{\sqrt x - 1}}{{\sqrt x }} - 9\sqrt x = 1 - \left( {\frac{1}{{\sqrt x }} + 9\sqrt x } \right)\)
Áp dụng bất đẳng thức Cô-si cho 2 số không âm \(\frac{1}{{\sqrt x }}\) và \(9\sqrt x \), tạ có:
\(\frac{1}{{\sqrt x }} + 9\sqrt x \ge 2\sqrt {\frac{1}{{\sqrt x }}.9\sqrt x } = 2\sqrt 9 = 6\).
\( \Rightarrow Q \le 1 - 6 = - 5\)
Dấu " = " xảy ra khi \(\frac{1}{{\sqrt x }} = 9\sqrt x \Leftrightarrow 1 = 9x \Leftrightarrow x = \frac{1}{9}\)
Vậy \(\max P = - 5\) khi \(x = \frac{1}{9}\).
Nhận xét: Bài toán tìm cực trị của biểu thức.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247