Cho biểu thức: \[P = \left( {\frac{{4\sqrt x }}{{2 + \sqrt x }} + \frac{{8x}}{{4 - x}}} \right):\left( {\frac{{\sqrt x - 1}}{{x - 2\sqrt x }} - \frac{2}{{\sqrt x }}} \right)\] với \(x > 9\).
1) Rút gọn biểu thức P?
2) Tìm m để với mọi giá trị \(x > 9\) ta có \(m\left( {\sqrt x - 3} \right)P > x + 1\)
1) Với \(x > 9\) thì biểu thức P đã có nghĩa.
Ta có: \[P = \left[ {\frac{{4\sqrt x \left( {2 - \sqrt x } \right)}}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}} + \frac{{8x}}{{4 - x}}} \right]:\left[ {\frac{{\sqrt x - 1}}{{x - 2\sqrt x }} - \frac{{2\left( {\sqrt x - 2} \right)}}{{\sqrt x \left( {\sqrt x - 2} \right)}}} \right]\]
\[ = \left[ {\frac{{4\sqrt x \left( {2 - \sqrt x } \right) + 8x}}{{4 - x}}} \right]:\left[ {\frac{{\sqrt x - 1 - 2\left( {\sqrt x - 2} \right)}}{{x - 2\sqrt x }}} \right] = \left( {\frac{{8\sqrt x + 4x}}{{4 - x}}} \right):\left( {\frac{{3 - \sqrt x }}{{x - 2\sqrt x }}} \right)\]
\( = \left[ {\frac{{4\sqrt x \left( {\sqrt x + 2} \right)}}{{\left( {2 - \sqrt x } \right)\left( {2 + \sqrt x } \right)}}} \right].\left( {\frac{{x - 2\sqrt x }}{{3 - \sqrt x }}} \right) = \left( {\frac{{4\sqrt x }}{{2 - \sqrt x }}} \right).\left[ {\frac{{\sqrt x \left( {\sqrt x - 2} \right)}}{{3 - \sqrt x }}} \right] = \frac{{4x}}{{\sqrt x - 3}}\)
Vậy \(P = \frac{{4x}}{{\sqrt x - 3}}\)
Cách 2: Đặt \(a = \sqrt x \) \(a \ge 0\)
Ta có: \(P = \left( {\frac{{4a}}{{2 + a}} + \frac{{8{a^2}}}{{4 - {a^2}}}} \right):\left( {\frac{{a - 1}}{{{a^2} - 2a}} - \frac{2}{a}} \right)\)
\( = \left[ {\frac{{4a\left( {2 - a} \right)}}{{\left( {2 + a} \right)\left( {2 - a} \right)}} + \frac{{8{a^2}}}{{\left( {2 + a} \right)\left( {2 - a} \right)}}} \right]:\left[ {\frac{{a - 1}}{{a\left( {a - 2} \right)}} - \frac{{2\left( {a - 2} \right)}}{{a\left( {a - 2} \right)}}} \right]\)
\( = \frac{{4a\left( {2 - a} \right) + 8{a^2}}}{{\left( {2 + a} \right)\left( {2 - a} \right)}}:\frac{{a - 1 - 2\left( {a - 2} \right)}}{{a\left( {a - 2} \right)}} = \frac{{4{a^2} + 8a}}{{\left( {2 + a} \right)\left( {2 - a} \right)}}:\frac{{3 - a}}{{a\left( {a - 2} \right)}}\)
\( = \frac{{4a\left( {a + 2} \right)}}{{\left( {2 + a} \right)\left( {2 - a} \right)}}.\frac{{a\left( {a - 2} \right)}}{{3 - a}} = \frac{{4{a^2}}}{{a - 3}} = \frac{{4x}}{{\sqrt x - 3}}\)
Nhận xét. Bài toán rút gọn biểu thức áp dụng phương pháp phân tích đa thức thành nhân tử.
2) Ta có: \(m\left( {\sqrt x - 3} \right)P > x + 1 \Leftrightarrow m\left( {\sqrt x - 3} \right).\frac{{4x}}{{\sqrt x - 3}} > x + 1\)
\( \Leftrightarrow 4mx > x + 1 \Leftrightarrow \left( {4m - 1} \right)x > 1 \Leftrightarrow \left\{ \begin{array}{l}4m - 1 > 0 \Leftrightarrow m < \frac{1}{4}\\x > \frac{1}{{4m - 1}}\,\,\left( * \right)\end{array} \right.\)
Giải (*), do \(x > 9 \Leftrightarrow \frac{1}{{4m - 1}} > 9 \Leftrightarrow \frac{1}{9} > 4m - 1 \Leftrightarrow \frac{5}{{18}} > m\)
Như vậy \(\frac{1}{4} < m < \frac{5}{{18}}\).
Nhận xét: Bài toán tìm điều kiện của tham số để biến thỏa mãn một bất đẳng thức trước
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247