1) Giải hệ phương trình x^2 -x.y = 24 và 2x-3y=1. 2) Giải phương trình (x+5)/2+(3-2x)/4=x-(7+x)/6

Câu hỏi :

1) Giải hệ phương trình \[\left\{ \begin{array}{l}{x^2} - xy = 24\\2x - 3y = 1\end{array} \right.\]

2) Giải phương trình \[\frac{{x + 5}}{2} + \frac{{3 - 2x}}{4} = x - \frac{{7 + x}}{6}\]

3) Cho phương trình \[2{x^2} + \left( {2m - 1} \right)x + m - 1 = 0\]. Không giải phương trình, tìm giá trị của m để phương trình có hai nghiệm phân biệt \[{x_1};{x_2}\] thỏa mãn hệ thức \[3{x_1} - 4{x_2} = 11\]

* Đáp án

* Hướng dẫn giải

1) Hệ phương trình tương đương với : \[\left\{ \begin{array}{l}{x^2} - \frac{{x\left( {2x - 1} \right)}}{3} = 24\\\frac{{2x - 1}}{3} = y\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}{x^2} + x = 72\\\frac{{2x - 1}}{3} = y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} + 9x = 8x + 72\\\frac{{2x - 1}}{3} = y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x\left( {x + 9} \right) = 8\left( {x + 9} \right)\\\frac{{2x - 1}}{3} = y\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}\left( {x + 9} \right)\left( {x - 8} \right) = 0\\\frac{{2x - 1}}{3} = y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x =  - 9\\x = 8\end{array} \right.\\\frac{{2x - 1}}{3} = y\end{array} \right.\left\{ \begin{array}{l}\left[ \begin{array}{l}x =  - 9\\x = 8\end{array} \right.\\\frac{{2x - 1}}{3} = y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 9\\y =  - \frac{{19}}{3}\end{array} \right. \vee \left\{ \begin{array}{l}x = 8\\y = 5\end{array} \right.\]

Vậy hệ phương trình có nghiệm : \[\left( {x;y} \right) = \left( { - 9; - \frac{{19}}{3}} \right),\left( {8;5} \right)\]

2) Phương trình tương đương với : \[\frac{{\left( {x + 5} \right).6}}{{2.6}} + \frac{{\left( {3 - 2x} \right).3}}{{4.3}} = \frac{{12x}}{{12}} - \frac{{\left( {7 + x} \right).2}}{{6.2}}\]

\[ \Leftrightarrow \left( {x + 5} \right).6 + \left( {3 - 2x} \right).3 = 12x - \left( {7 + x} \right).2 \Leftrightarrow 39 = 10x - 14 \Leftrightarrow x = \frac{{53}}{{10}}\]

 3) Để phương trình có 2 nghiệm phân biệt \[{x_1},{x_2}\] thì \[\Delta  > 0\]

\[ \Leftrightarrow {\left( {2m - 1} \right)^2} - 4.2\left( {m - 1} \right) > 0 \Leftrightarrow {\left( {3 - 2m} \right)^2} > 0 \Leftrightarrow 3 - 2m \ne 0 \Leftrightarrow m \ne \frac{3}{2}\]

Theo định lý Vi-ét, ta có \[\left\{ \begin{array}{l}{x_1} + {x_2} =  - \frac{{2m - 1}}{2} = \frac{{1 - 2m}}{2}\\{x_1}.{x_2} = \frac{{m - 1}}{2}\end{array} \right.\]

Kết hợp với yêu cầu đề bài, ta có hệ phương trình \[\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{1 - 2m}}{2}\\{x_1}{x_2} = \frac{{m - 1}}{2}\\3{x_1} - 4{x_2} = 11\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}4{x_2} = 3{x_1} - 11\\4{x_1} + 4{x_2} = 2\left( {1 - 2m} \right)\\4{x_1}.{x_2} = 2\left( {m - 1} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4{x_2} = 3{x_1} - 11\\4{x_1} + \left( {3{x_1} - 11} \right) = 2\left( {1 - 2m} \right)\\{x_1}\left( {3{x_1} - 11} \right) = 2\left( {m - 1} \right)\end{array} \right.\] \[ \Leftrightarrow \left\{ \begin{array}{l}4{x_2} = 3{x_1} - 11\\2m = \frac{{13 - 7{x_1}}}{2}\\3{x_1}^2 - 11{x_1} = 2m - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4{x_2} = 3{x_1} - 11\\2m = \frac{{13 - 7{x_1}}}{2}\\3{x_1}^2 - 11{x_1} = \frac{{13 - 7{x_1}}}{2} - 2\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}{x_1} = 3\\{x_2} =  - \frac{1}{2}\\m =  - 2\end{array} \right.\] hoặc \[\left\{ \begin{array}{l}{x_1} =  - \frac{1}{2}\\{x_2} =  - \frac{{25}}{8}\\m = \frac{{33}}{8}\end{array} \right.\]

Cả hai giá trị m tìm được đều thỏa mãn điều kiện để phương trình có 2 nghiệm

Vậy \[m =  - 2\] hoặc \[m = \frac{{33}}{8}\]

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề ôn thi vào 10 môn Toán có đáp án (Mới nhất) !!

Số câu hỏi: 45

Copyright © 2021 HOCTAP247