Cho phương trình 2x2 – mx – 5 = 0 (m là tham số) (1)
a) Chứng tỏ phương trình (1) luôn có 2 nghiệm với mọi m.
b) Gọi x1, x2 là 2 nghiệm của phương trình (1). Tính biểu thức A = x12 – x1 + x22 – x2 theo m.
a) Ta có: ∆ = m2 – 4.2.(–5) = m2 + 40
Vì ∆ = m2 + 40 > 0 (đúng với mọi giá trị của m).
Nên phương trình (1) luôn có 2 nghiệm với mọi m (điều phải chứng minh).
b) A = x12 – x1 + x22 – x2
= (x12 + x22) – (x1 + x2)
= (x1 + x2)2 – 2x1.x2 – (x1 + x2) (2)
Theo hệ thức Vi-et, ta có:
Thay vào (2) ta được:
A = =.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247