Cho tam giác ΔABC cân tại A, nội tiếp đưởng tròn (O). M là một điểm trên cung nhỏ AC (M ≠ A; C), MC cắt tia BA tại I. Tiếp tuyến tại B của đường tròn (O) cắt AM tại E. Gọi N là gia...

Câu hỏi :

Cho tam giác ΔABC cân tại A, nội tiếp đưởng tròn (O). M là một điểm trên cung nhỏ AC (M ≠ A; C), MC cắt tia BA tại I. Tiếp tuyến tại B của đường tròn (O) cắt AM tại E. Gọi N là giao điểm của BI với EC. Chứng minh rằng:

a. AMB^=ABC^.

b. IA.IB = IM.IC.

c Tứ giác BEIM nội tiếp.

d. (BEBC)2=EN.INNC.NB.

* Đáp án

* Hướng dẫn giải

Cho tam giác ΔABC cân tại A, nội tiếp đưởng tròn (O). M là một điểm trên cung nhỏ AC (M ≠ A; C), MC cắt tia BA tại I. Tiếp tuyến tại B của đường tròn (O) cắt AM tại E. Gọi N là giao điểm của BI với EC. Chứng minh rằng: (ảnh 1)

a. Xét tứ giác AMCB có 4 điểm A, M, C, B thuộc đường tròn (O)

Suy ra tứ giác AMCB nội tiếp.

Ta có

AMB^=ACB^ (tứ giác AMCB nội tiếp)

ABC^=ACB^ (tam giác ABC cân tại A)

Suy ra AMB^=ABC^ (điều phải chứng minh)

b. Xét ∆ AIC và ∆ MIB có:

BIC^ là góc chung

IBM^=ICA^(hai góc nội tiếp cùng chắn cung AM)

Suy ra ∆ AIC  ∆ MIB (g.g)

Từ đó suy ra IAIM=ICIB IA.IB = IM.IC (đpcm)

c. Ta có

EBI^=ACB^ (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cùng chắn cung AB)

EMI^=ABC^ (tứ giác AMCB nội tiếp)

ABC^=ACB^ (tam giác ABC cân tại A)

Từ ba điều trên suy ra EBI^=EMI^ suy ra tứ giác BEIM nội tiếp.

d. Ta có EIB^=EMB^(tứ giác EIMB nội tiếp)

EMB^=AMB^=ABC^=IBC^(chứng minh trên)

Suy ra EIB^=IBC^ suy ra IE // BC (hai góc so le trong bằng nhau).

Áp dụng hệ quả của định lý Ta − let ta có:

NENC=NINB=EIBCNE.NINC.NB=EI2BC2 (1)

Ta có EIB^=EMB^(tứ giác EIMB nội tiếp).

EMB^=EBI^ (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cùng chắn cung AB).

Suy ra EBI^=EBI^ suy ra tam giác EBI cân tại E dẫn đến EB = EI (2)

Từ (1) và (2) suy ra (BEBC)2=NE.NINB.NC (điều phải chứng minh).

Copyright © 2021 HOCTAP247