a. Vẽ Parabol: (P): y = x^2 và đường thẳng (d): y = 2x + 3 trên cùng mặt phẳng tọa độ b. Tìm tọa độ giao điểm của (P) và (d) bằng phép tính

Câu hỏi :

a. Vẽ Parabol: (P): y = x2 và đường thẳng (d): y = 2x + 3 trên cùng mặt phẳng tọa độ

b. Tìm tọa độ giao điểm của (P) và (d) bằng phép tính

* Đáp án

* Hướng dẫn giải

a. Vẽ (P)

Bảng giá trị:

x

−2

−1

0

1

2

y = x2

4

1

0

1

4

Trên mặt phẳng tọa độ lấy các điểm A(−2; 4); B(−1; 1); O(0; 0); C(1; 1); D(2; 4).

Vẽ (d)

Đường thẳng (d): y = 2x + 3 có a = 2, b = 3 đi qua hai điểm (0; b) và (ba;  0)

Do đó, hai điểm thuộc đường thẳng (d) là M(0; 3) và  N(−1,5; 0).

a. Vẽ Parabol: (P): y = x^2 và đường thẳng (d): y = 2x + 3 trên cùng mặt phẳng tọa độ b. Tìm tọa độ giao điểm của (P) và (d) bằng phép tính (ảnh 1)

b. Phương trình hoành độ giao điểm của (P) và (d) là:

x2 = 2x + 3

Û x2 – 2x – 3 = 0

Û x2 – 3x + x – 3 = 0

Û x(x – 3) + (x – 3) = 0

Û (x – 3)(x + 1) = 0

Û [x=3x=1

Với x = 3 thì y = 2x + 3 = 2.3 + 3= 9.

Do đó, ta có tọa độ giao điểm của (P) và (d) là A(3; 9).

Với x = −1 thì y = 2x + 3 = 2.(−1) + 3 = 1.

Do đó, ta có tọa độ giao điểm của (P) và (d) là B(−1; 1).

Vậy hai đồ thị hàm số trên có hai giao điểm là A(3; 9) và B(−1; 1).

Copyright © 2021 HOCTAP247