a. Vẽ Parabol: (P): y = x2 và đường thẳng (d): y = 2x + 3 trên cùng mặt phẳng tọa độ
b. Tìm tọa độ giao điểm của (P) và (d) bằng phép tính
a. Vẽ (P)
Bảng giá trị:
x |
−2 |
−1 |
0 |
1 |
2 |
y = x2 |
4 |
1 |
0 |
1 |
4 |
Trên mặt phẳng tọa độ lấy các điểm A(−2; 4); B(−1; 1); O(0; 0); C(1; 1); D(2; 4).
Vẽ (d)
Đường thẳng (d): y = 2x + 3 có a = 2, b = 3 đi qua hai điểm (0; b) và
Do đó, hai điểm thuộc đường thẳng (d) là M(0; 3) và N(−1,5; 0).
b. Phương trình hoành độ giao điểm của (P) và (d) là:
x2 = 2x + 3
Û x2 – 2x – 3 = 0
Û x2 – 3x + x – 3 = 0
Û x(x – 3) + (x – 3) = 0
Û (x – 3)(x + 1) = 0
Û
• Với x = 3 thì y = 2x + 3 = 2.3 + 3= 9.
Do đó, ta có tọa độ giao điểm của (P) và (d) là A(3; 9).
• Với x = −1 thì y = 2x + 3 = 2.(−1) + 3 = 1.
Do đó, ta có tọa độ giao điểm của (P) và (d) là B(−1; 1).
Vậy hai đồ thị hàm số trên có hai giao điểm là A(3; 9) và B(−1; 1).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247