Cho nửa đường tròn (O) đường kính AB. Kẻ tiếp tuyến Bx với nửa đường tròn. Gọi C là điểm trên nửa đường tròn sao cho cung CB bằng cung CA, D là một điểm tùy ý trên cung CB (D khác C và B). Các tia AC, AD cắt Bx theo thứ tự tại E và F.
a. Chứng minh rằng: ∆ABE là tam giác cân
b. Chứng minh rằng: FB2 = FD.FA
c. Chứng minh rằng: CDFE là tứ giác nội tiếp
a. Ta có (hai góc nội tiếp chắn hai cung bằng nhau)
Ta lại có = 90° (góc nội tiếp chắn nửa đường tròn)
Suy ra tam giác CAB là tam giác vuông cân và = 45°
Xét tam giác ABE vuông tại B (Bx là tiếp tuyến của (O)) có = 45°
Dẫn đến = 180° − = 180 – 90 – 45 = 45° =
Suy ra tam giác ABE là tam giác vuông cân.
b. Xét ∆ FDB và ∆ FBA có:
là góc chung
= = 90° ( là góc nội tiếp chắn nữa đường tròn và Bx là tiếp tuyến của (O))
Suy ra ∆ FDB ∆ FBA (g.g)
Từ đó suy ra FB2 = FD.FA (đpcm)
c. Từ câu b ta suy ra được: Trong một tam giác vuông thì bình phương cạnh góc vuông bằng tích hình chiếu của nó trên cạnh huyền nhân với cạnh huyền.
Xét tam giác ABF vuông tại B đường cao BD ta có: AB2 = AD.AF
ABE vuông tại B đường cao BC ta có: AB2 = AC.AE
Suy ra AD.AF = AC.AE
Xét ∆ ACD và ∆ AFE có:
là góc chung
(chứng minh trên)
Suy ra ∆ ACD ∆ AFE (c.g.c)
Suy ra suy ra tứ giác CDFE là tứ giác nội tiếp.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247