Cho phương trình: m^2x^2 – 2(m + 1)x + 1 = 0 (m là tham số) (1) a. Giải phương trình với m = 1. b. Tìm m nguyên nhỏ nhất để phương trình (1) có hai nghiệm phân biệt.

Câu hỏi :

Cho phương trình: m2x2 – 2(m + 1)x + 1 = 0 (m là tham số) (1)

a. Giải phương trình với m = 1.

b. Tìm m nguyên nhỏ nhất để phương trình (1) có hai nghiệm phân biệt.

* Đáp án

* Hướng dẫn giải

a. Với m = 1 phương trình trở thành: x2 – 4x + 1 = 0

Tính ∆ = b2 – 4ac. Phương trình có các hệ số là a = 1; b = −4; c = 1.

∆ = (−4)2 – 4.1.1 = 16 – 4 = 12 > 0.

Do ∆ > 0, áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt:

x1 = 4+122.1=2+3 ; x2 = 4122.1=23 .

Vậy phương trình có tập nghiệm là S = {2+3;23} .

b. ∆’ = (b’)2 – ac = (−m – 1)2 – m2.1 = m2 + 2m + 1 – m2 = 2m + 1

Để phương trình có 2 nghiệm phân biệt thì:

∆’ > 0 Û 2m + 1 > 0 Û m > 12  .

Vậy giá trị m nguyên nhỏ nhất để phương trình (1) có hai nghiệm phân biệt là m = 0.

Copyright © 2021 HOCTAP247