Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Từ A kẻ tiếp tuyến AM, AN tới đường tròn (M, N là các tiếp điểm). 1) Chứng minh tứ giác AMON nội tiếp. 2) Trên cung nhỏ MN lấy đi...

Câu hỏi :

Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Từ A kẻ tiếp tuyến AM, AN tới đường tròn (M, N là các tiếp điểm).

1) Chứng minh tứ giác AMON nội tiếp.

2) Trên cung nhỏ MN lấy điểm B khác M, N và B không là điểm chính giửa của cung MN. Tia AB cắt đường tròn (O) tại điểm thứ hai C. Chứng minh: AM2 = AB.AC

3) Gọi H là giao điểm của AO và MN. Chứng minh góc AHB= góc ACO.

* Đáp án

* Hướng dẫn giải

1) Ta có:

OMA^= 90° (AM là tiếp tuyến của (O))

ONA^= 90° (AN là tiếp tuyến của (O))

Xét tứ giác ABOC có OMA^ + ONA^= 90° + 90° = 180°

Suy ra tứ giác ABOC nội tiếp.

2) Xét ∆AMB và ∆ACM có:

MAC^là góc chung

 MCB^=BMA^(góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cùng chắn cung MB).

Suy ra ∆AMB  ∆ACM (g.g)

Từ đó suy ra AMAC=ABAMAM2=AC.AB  (điều phải chứng minh)

3) Ta có OM = ON = R.

MA = MB (tính chất hai tiếp tuyến cắt nhau)

Suy ra OA là trung trực của MN suy ra OA ^ MN.

Xét ∆OMA vuông tại M có đường cao MH ta có:

MA2 = AH.AO ABAO=AHAC

Mà MA2 = AC.AB (chứng minh trên)

Suy ra AH.AO = AC.AB

∆ABH và ∆AOC có:

 OAC^là góc chung

ABAO=AHAC(chứng minh trên)

Do đó ∆ABH  ∆AOC (c.g.c)

Suy ra AHB^=ACO^  (hai góc tương ứng).

Copyright © 2021 HOCTAP247