Biết rằng m, n là các số thực dương để phương trình ẩn x sau có nghiệm:
x2 – 4x + n(m – 1) + 5 = 0.
Tìm giá trị nhỏ nhất của biểu thức: .
Ta có: ∆’ = 22 – [n(m – 1) + 5] = −nm + n −1.
Do m, n là các số thực dương để phương trình có nghiệm nên ta có:
∆’ = −nm + n – 1 ≥ 0
Û n(1 – m) ≥ 1
Mà n > 0 nên 1 – m > 0
Cùng với điều kiện đề bài 0 < m < 1 1 > 1 – m > 0
Ta có n(1 – m) ≥ 1
mà 1 > 1 – m
nên n > 1
Ta có
Đặt a = và b = n(1 − m) (b ≥ 1)
Do b ≥ 1, 0 < m < 1 và 1 > 1 – m > 0 nên suy ra a > 1.
Xét P = với a > 1 biểu thức này nhỏ nhất khi a nhỏ nhất.
Do a nhỏ nhất khi b nhỏ nhất và m(1− m) lớn nhất
b nhỏ nhất = 1
Áp dụng bất đẳng thức Cosi m(1−m)
Vậy a nhỏ nhất bằng
Khi đó:
Pmin = = 6,25
Khi m = 0,5 và n = 2.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247