) Giải hệ phương trình: 2/x+1+2/y-2=6 . 2) Cho phương trình: x2 −2(m −1)x +

Câu hỏi :

1) Giải hệ phương trình: 2x+1+2y2=65x+11y2=3 .

2) Cho phương trình: x2 −2(m −1)x + m2 − 3m = 0 (1) (x là ẩn số)

a) Giải phương trình (1) khi m = 5.

b) Tìm tất cả giá trị của m để phương trình (1) có hai nghiệm.

* Đáp án

* Hướng dẫn giải

) Điều kiện xác định x+10y20x1y2

Đặt u=1x+1,v=1y2

Hệ phương trình trở thành: 2u+2v=65uv=3

v=5u32u+2(5u3)=6v=5u32u+10u6=6v=5u312u=12u=1v=2

u=1x+1=1x+1=1x=0 (thỏa mãn)

v=1y2=2y2=12y=52 (thỏa mãn)

Vậy hệ phương trình đã cho có tập nghiệm là 0;52 .

2)

a) Khi m = 5 phương trình trở thành

x2 −2(5 −1)x + 52 − 3.5 = 0

Û x2 −8x + 25 − 15 = 0

Û x2 −8x + 10 = 0

Tính ∆ = (−4)2 – 1.10 = 16 – 10 = 6 > 0

Do ∆ > 0, áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt:

x1 = (4)+61=4+6 ; x2 (4)61=46

Vậy phương trình có tập nghiệm S =4+6;46.

b) x2 −2(m −1)x + m2 − 3m = 0 (1) (x là ẩn số)

Ta có  = [−(m – 1)]2 – 1.(m2 – 3m)

= m2 – 2m + 1 − m2 + 3m = m + 1.

Để phương trình có hai nghiệm thì  > 0 Û m + 1 > 0 Û m > −1.

Vậy để phương trình (1) có hai nghiệm thì m > −1.

Copyright © 2021 HOCTAP247