Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại S. Kẻ tiếp tuyến chung ngoài

Câu hỏi :

Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại S. Kẻ tiếp tuyến chung ngoài AB, CD với A, C thuộc (O), B,DO'

Chứng minh rằng AB+CD=AC+BD

* Đáp án

* Hướng dẫn giải

Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại S. Kẻ tiếp tuyến chung ngoài (ảnh 1)

Vẽ tiếp tuyến chung tại S lần lượt cắt AB, CD ở M, N. Theo tính chất tiếp tuyến ta có:

AM=SM=BMCN=SN=DN do đó: AB+CD=2MN(1)

Mặt khác OO' là trục đối xứng của hình nên C đối xứng với A qua OO', D đối xứng với B qua OO' nên ACOO',BDOO' do đó AC//BDABCD là hình thang.

M, N lần lượt là trung điểm của AB, CD nên MN là đường trung bình hình thang ABCD.

AC+BD=2MN(2)

Từ (1) và (2) suy ra AB+CD=AC+BD.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập theo tuần Toán 9 - Tuần 16 !!

Số câu hỏi: 13

Copyright © 2021 HOCTAP247