Cho vuông tại A (AB < AC) nội tiếp đường tròn (O) có đường kính BC. Kẻ dây AD vuông góc với BC. Gọi E là giao điểm của DB và CA. Qua E kẻ đường thẳng vuông góc với BC, cắt BC ở H, cắt AB ở F. Chứng minh rằng:
a) cân
b) cân
c) HA là tiếp tuyến của (O)
a) Vì AD // EF (cùng vuông góc BC) (so le trong ) (1)
Ta lại có có BO vừa là đường cao vừa là đường trung tuyến (tính chất tiếp tuyến – dây cung) nên cân tại mà (so le trong) (3)
Từ (1), (2), (3) cân tại B
b) cân tại B đường cao cũng là trung tuyến là trung điểm EF vuông tại A, AH đường trung tuyến
cân tại H
c) Vì cân tại H mà (cùng phụ góc E) (5)
cân ) (6)
Từ (4), (5), (6)
và là tiếp tuyến của (O).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247