Cho x, y, z là các số thực dương thỏa mãn x + y + z nhỏ hơn hoặc bằng 1. Tìm giá trị nhỏ nhất của biểu thức

Câu hỏi :

Cho x, y, z là các số thực dương thỏa mãn x+ y + z 1. Tìm giá trị nhỏ nhất của biểu thức

P=1x2+y2+z2+  1xy+yz+zx

* Đáp án

* Hướng dẫn giải

Ta có xy+yz+zxx+y+z3313 nên2017xy+yz+zx6051

Áp dụng BĐT x+y+z1x+1y+1z9 , ta có:

(x2+y2+z2)+(xy+yz+zx)+(xy+yz+zx)  1x2+y2+z2+1xy+yz+zx+1xy+yz+zx9(x2+y2+z2+2xy+2yz+2zx)  1x2+y2+z2+1xy+yz+zx+1xy+yz+zx9

Hay 1x2+y2+z2+  2xy+yz+zx9

Từ đó ta có: P=1x2+y2+z2+  2xy+yz+zx+  2017xy+yz+zx9+6051=6060

P6060
Vậy GTNN của P là 6060 khi và chỉ khi x=y=z=13

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bộ đề Ôn tập Toán 9 thi vào 10 năm 2020 có đáp án !!

Số câu hỏi: 145

Copyright © 2021 HOCTAP247