Cho x, y là các số thực dương thỏa x + y = 1 Tìm giá trị nhỏ nhất của biểu thức

Câu hỏi :

Cho x, y là các số thực dương thỏa x + y = 1

Tìm giá trị nhỏ nhất của biểu thức A=2x2y2+x+1x+1.

* Đáp án

* Hướng dẫn giải

Ta có: x+y=1y=1x thay vào A ta được:

A=2x2y2+x+1x+1=2x2(1x)2+x+1x+1=2x2x22x+1+x+1x+1=x2+2x+x+1x=x2x+14+4x+1x14=x122+4x+1x14

Dễ thấy x1220,x

Áp dụng bất đẳng thức Cô-si ta có 4x+1x24x.1x=4

Suy ra x122+4x+1x140+414=154

Dấu "=" xảy ra khi x=12

Vậy Amin=154 khi x=12.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bộ đề Ôn tập Toán 9 thi vào 10 năm 2020 có đáp án !!

Số câu hỏi: 145

Copyright © 2021 HOCTAP247