Cho hai số thực dương a, b thỏa mãn a + b + 3ab = 1. Tìm giá trị lớn nhất của biểu thức

Câu hỏi :

Cho hai số thực dương a, b thỏa mãn a + b + 3ab = 1.

Tìm giá trị lớn nhất của biểu thức P=12aba+ba2b2.

* Đáp án

* Hướng dẫn giải

Ta có: (ab)20a2+b22ab(a+b)24ab;a2+b2(a+b)22

Từ giả thiết a+b+3ab=1a+b=13ab134a+b2

3a+b2+4a+b40a+b+23a+b20a+b23.3aba+b=1(a+b)a+b=1a+b1321=12.a2+b2a+b2229a2+b229.P=12aba+ba2b2=4.3aba+ba2+b2229=169.

Giá trị lớn nhất của P bằng 169 khi a=ba+b+3ab=1a=b=13.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bộ đề Ôn tập Toán 9 thi vào 10 năm 2020 có đáp án !!

Số câu hỏi: 145

Copyright © 2021 HOCTAP247