Rút gọn và tìm giá trị lớn nhất của biểu thức: A = (1/ 1- căn bậc hai x + x+2/ x căn bậc hai x + 1 + căn bậc hai x/ x+ căn bậc hai x + 1)

Câu hỏi :

Rút gọn và tìm giá trị lớn nhất của biểu thức: A=11x+x+2xx1+xx+x+1:x13 , với x0,  x1

* Đáp án

* Hướng dẫn giải

Với x0,  x1 ta có:

A=11x+x+2xx1+xx+x+1:x13=x+x+1+x+2+xx1x1x+x+1.3x1=3x12x12x+x+1=3x+x+1

Vậy A=3x+x+1 với x0,  x1

A đạt giá trị lớn nhất x+x+1 đạt giá trị nhỏ nhất

x0 nên x+x+11A=3x+x+13 

Đẳng thức xảy ra <=> x = 0. Vậy maxA = 3 khi x = 0.

Ta thấy A có dạng A=mpx (với m là hằng số dương, p(x) là một biểu thức chứa biến x), do vậy áp dụng phương pháp 2.

Copyright © 2021 HOCTAP247