a) Ta có \(\widehat {ACD} = {90^0}\) nên \(\widehat {ACM} = {90^0} = \widehat {AHM}\). Do đó AMCH nội tiếp
Suy ra \(\widehat {AMC} = \widehat {CHB}\,\,\left( 1 \right)\)
Ta lại có \(MH.MO = M{A^2} = MC.MD\)
Suy ra \(\Delta MCH \sim \Delta MOD\) và tứ giác OHCD nội tiếp
Do đó \(\widehat {MHC} = \widehat {MDO} = \widehat {DCO} = \widehat {DHO}\)
Suy ra \(\widehat {CHB} = {90^0} - \widehat {MHC} = {90^0} - \widehat {DHO} = \widehat {BHD}\,\,\left( 2 \right)\)
Từ (1) và (2) suy ra \(2\widehat {AMC} = \widehat {CHD}\)
b) Ta có \(\widehat {HMC} = \widehat {HAC} = \widehat {BAC}\) và \(\widehat {CHM} = \widehat {CAM} = \widehat {CDA} = \widehat {CBA},\)
Nên \(\Delta MCH \sim \Delta ACB\). Suy ra \(\frac{{MC}}{{MH}} = \frac{{AC}}{{AB}} = \frac{{AC}}{{2AH}}\,\,\left( 1 \right)\)
Mặt khác, \(\widehat {IMC} = \widehat {CDB} = \widehat {CAB} = \widehat {CAH}\) và \(\widehat {ICM} = \widehat {DCB} = \widehat {DAB} = \widehat {AMH} = \widehat {ACH}\)
Nên \(\Delta IMC \sim \Delta HAC\). Suy ra \(\frac{{MC}}{{MI}} = \frac{{AC}}{{AH}}\)
Từ (1) và (2) suy ra I là trung điểm MH
Gọi \(L = IK \cap DB\), suy ra L là trung điểm của DB
Gọi \(F = HD \cap MB\). Suy ra
Do đó \(\frac{{FD}}{{FH}} = \frac{{DB}}{{HM}} = \frac{{2DL}}{{2HI}} = \frac{{DL}}{{HI}}\). Suy ra \(\Delta FDL \sim \Delta FHI\)
Từ đây ta được F, L, I thẳng hàng. Do đó ta được kết quả.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247