Cho hình chữ nhật ABCD có AD = 12cm, CD = 16cm. Chứng minh rằng bốn điểm

Câu hỏi :

Cho hình chữ nhật ABCD có AD = 12cm, CD = 16cm. Chứng minh rằng bốn điểm ABCD cùng thuộc một đường tròn.Tính bán kính của đường tròn đó.

* Đáp án

* Hướng dẫn giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi I là giao điểm của hai đường chéo AC và BD. Ta có:

IA = IB = IC = ID (tính chất hình chữ nhật)

Vậy bốn điểm A, B, C, D cùng nằm trên một đường tròn bán kính AC/2

Áp dụng định lí Pitago vào tam giác vuông ABC ta có:

AC2=AB2+BC2=162+122 = 256 + 144 = 400

Suy ra: AC = 400 = 20 (cm)

Vậy bán kính đường tròn là: IA = AC/2 = 20/2 = 10 (cm)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải Sách Bài Tập Toán 9 Tập 1 !!

Số câu hỏi: 814

Copyright © 2021 HOCTAP247