Cho đường tròn (O) và đường thẳng d không giao nhau. Dựng tiếp tuyến của

Câu hỏi :

Cho đường tròn (O) và đường thẳng d không giao nhau. Dựng tiếp tuyến của đường tròn (O) sao cho tiếp tuyến đó song song với d

* Đáp án

* Hướng dẫn giải

* Phân tích

Giả sử tiếp tuyến của đường tròn dựng được thỏa mãn điều kiện bài toán

- d1 là tiếp tuyến của đường tròn tại A nên d1 ⊥ OA

- Vì d1 // d nên d ⊥ OA

Vậy A là giao điểm của đường thẳng kẻ từ O vuông góc với d

* Cách dựng

- Dựng OH vuông góc với d cắt đường tròn (O) tại A và B

- Dựng đường thẳng d1 đi qua A và vuông góc với OA

- Dựng đường thẳng d2 đi qua B và vuông góc với OB

Khi đó d1 và d2 là hai tiếp tuyến cần dựng.

* Chứng minh

Ta có: A và B thuộc (O)

d1 // d mà d ⊥ OH nên d1 ⊥ OH hay d1 ⊥ OA tại A

Suy ra d1 là tiếp tuyến của đường tròn (O)

d2 // d mà d ⊥ OH nên d2 ⊥ OH hay d2 ⊥ OB tại B

Suy ra d2 là tiếp tuyến của đường tròn (O)

* Biện luận

Đường thẳng OH luôn cắt đường tròn (O) nên giao điểm A và B luôn dựng được.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải Sách Bài Tập Toán 9 Tập 1 !!

Số câu hỏi: 814

Copyright © 2021 HOCTAP247