Cho nửa đường tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax

Câu hỏi :

, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Gọi M là một điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax, By theo thứ tự ở C và D. Tìm vị trí của điểm M để hình thang ABDC có chu vi nhỏ nhất

* Đáp án

* Hướng dẫn giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Theo tính chất hai tiếp tuyến cắt nhau ta có:

CA = CM

DB = DM

Suy ra: AC + BD = CM + DM = CD

Chu vi hình thang ABDC bằng: AB + BD + DC + CA = AB + 2CD

Vì đường kính AB của (O) không thay đổi nên chu vi hình thang nhỏ nhất khi CD nhỏ nhất

Ta có: CD AB nên CD nhỏ nhât khi và chỉ khi CD = AB

Khi đó CD // AB ⇔ OM ⊥ AB

Vậy khi M là giao điểm của đường thẳng vuông góc với AB tại O với nửa đường tròn (O) thì hình thang ABDC có chu vi nhỏ nhất.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải Sách Bài Tập Toán 9 Tập 1 !!

Số câu hỏi: 814

Copyright © 2021 HOCTAP247