Cho nửa đường tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax

Câu hỏi :

Cho nửa đường tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Qua một điểm M thuộc nửa đường tròn, kẻ tiếp tuyến thứ ba cắt Ax, By theo thứ tự ở C và D. Gọi N là giao điểm của AD và BC, H là giao điểm của MN và AB. Chứng minh rằng: MN ⊥ AB

* Đáp án

* Hướng dẫn giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ax ⊥ AB

By ⊥ AB

Suy ra: Ax // By hay AC // BD

Trong tam giác BND, ta có AC // BD

Suy ra: ND/NA = BD/AC (hệ quả định lí Ta-lét)     (1)

Theo tính chất hai tiếp tuyến cắt nhau, ta có:

AC = CM và BD = DM      (2)

Từ (1) và (2) suy ra: ND/NA = MD/MC

Trong tam giác ACD, ta có: ND/NA = MD/MC

Suy ra: MN // AC (theo định lí đảo định lí Ta-lét)

Mà: AC ⊥ AB (vì Ax ⊥ AB)

Suy ra: MN ⊥ AB

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải Sách Bài Tập Toán 9 Tập 1 !!

Số câu hỏi: 814

Copyright © 2021 HOCTAP247