Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Gọi I là trung

Câu hỏi :

Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Gọi I là trung điểm của OO’. Qua A vẽ đường thẳng vuông góc với IA, cắt các đường tròn (O) và (O’) tại C và D (khác A). Chứng minh rằng AC = AD

* Đáp án

* Hướng dẫn giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kẻ OH ⊥ CD, O’K ⊥ CD

Ta có: IA ⊥ CD

Suy ra : OH // IA // O’K

Theo giả thiết : IO = IO’

Suy ra : AH = AK (tính chất đường thẳng song song cách đều) (1)

Ta có : OH ⊥ AC

Suy ra : HA = HC = (1/2).AC (đường kính dây cung) ⇒ AC = 2AH (2)

Lại có : O’K ⊥ AD

Suy ra : KA = KD = (1/2).AD (đường kính dây cung) ⇒ AD = 2AK (3)

Từ (1), (2) và (3) suy ra: AC = AD

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải Sách Bài Tập Toán 9 Tập 1 !!

Số câu hỏi: 814

Copyright © 2021 HOCTAP247