Hỏi bốn đường thẳng sau có đồng quy không: (d1): 3x + 2y = 13, (d2): 2x + 3y = 7

Câu hỏi :

Hỏi bốn đường thẳng sau có đồng quy không: (d1): 3x + 2y = 13, (d2): 2x + 3y = 7, (d3): x – y = 6, (d4): 5x – 0y = 25?

* Đáp án

* Hướng dẫn giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: (d3): x – y = 6 ⇔ y = x – 6

(d4): 5x – 0y = 25 ⇔ x = 5

Vẽ đường thẳng (d3) là đồ thị hàm số y = x – 6

Cho x = 0 thì y = -6 ⇒ (0; -6)

Cho y = 0 thì x = 6 ⇒ (6; 0)

Vẽ đường thẳng (d4) là đường thẳng x = 5

Hai đường thẳng (d3) và (d4) cắt nhau tại I(5; -1). Lần lượt thay các giá trị x và y này vào phương trình đường thẳng (d1) và (d2), ta có:

(d1): 3.5 + 2.(-1) = 15 – 2 = 13

(d2): 2.5 + 3.(-1) = 10 – 3 = 7.

Vậy x và y thỏa mãn hai phương trình 3x + 2y = 13 và 2x + 3y = 7 nên (x; y) = (5; -1) là nghiệm của các phương trình trên. Hay là (d1) và (d2) đều đi qua I(5; -1).

Vậy bốn đường thẳng (d1): 3x + 2y = 13, (d2): 2x + 3y = 7, (d3): x – y = 6, (d4): 5x – 0y = 25 đồng quy.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải Sách Bài Tập Toán 9 Tập 2 !!

Số câu hỏi: 704

Copyright © 2021 HOCTAP247