A. 1
B. 2
C. 3
D. 4
C
ĐKXĐ : \(a > 0,\,\,b > 0,\,\,a \ne b\)
\(\dfrac{{{{\left( {\sqrt a - \sqrt b } \right)}^3} + 2a\sqrt a + b\sqrt b }}{{a\sqrt a + b\sqrt b }} + \dfrac{{3\left( {\sqrt {ab} - b} \right)}}{{a - b}}\)
\( = \dfrac{{a\sqrt a - 3a\sqrt b + 3b\sqrt a - b\sqrt b + 2a\sqrt a + b\sqrt b }}{{{{\left( {\sqrt a } \right)}^3} + {{\left( {\sqrt b } \right)}^3}}} \)\(+ \dfrac{{3\left( {\sqrt {ab} - b} \right)}}{{\left( {\sqrt a + \sqrt b } \right)\left( {\sqrt a - \sqrt b } \right)}}\)
\( = \dfrac{{3a\sqrt a - 3a\sqrt b + 3b\sqrt a }}{{\left( {\sqrt a + \sqrt b } \right)\left( {a - \sqrt {ab} + b} \right)}} \)\(+ \dfrac{{3\sqrt b \left( {\sqrt a - \sqrt b } \right)}}{{\left( {\sqrt a + \sqrt b } \right)\left( {\sqrt a - \sqrt b } \right)}}\)
\( = \dfrac{{3\sqrt a \left( {a - \sqrt {ab} + b} \right)}}{{\left( {\sqrt a + \sqrt b } \right)\left( {a - \sqrt {ab} + b} \right)}}\)\( + \dfrac{{3\sqrt b }}{{\sqrt a + \sqrt b }}\)
\( = \dfrac{{3\sqrt a }}{{\sqrt a + \sqrt b }} + \dfrac{{3\sqrt b }}{{\sqrt a + \sqrt b }}\)
\( = \dfrac{{3\left( {\sqrt a + \sqrt b } \right)}}{{\sqrt a + \sqrt b }} = 3 .\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247