Rút gọn \(M = \left( {\dfrac{{\sqrt x + 1}}{{x + 2\sqrt x + 1}} - \dfrac{{\sqrt x - 2}}{{x - 1}}} \right).\dfrac{{\sqrt x + 1}}{{\sqrt x }}\)

Câu hỏi :

Rút gọn \(M = \left( {\dfrac{{\sqrt x + 1}}{{x + 2\sqrt x + 1}} - \dfrac{{\sqrt x - 2}}{{x - 1}}} \right).\dfrac{{\sqrt x + 1}}{{\sqrt x }}\) với \(x > 0,\,\,x \ne 1\).

A.  \(\dfrac{1}{{\left( {\sqrt x + 1} \right)\sqrt x }}\)

B.  \(\dfrac{1}{{\left( {\sqrt x - 1} \right)\sqrt x }}\)

C.  \(\dfrac{1}{{\left( {\sqrt x - 2} \right)\sqrt x }}\)

D.  \(\dfrac{1}{{\left( {\sqrt x +2} \right)\sqrt x }}\)

* Đáp án

B

* Hướng dẫn giải

 \(M = \left( {\dfrac{{\sqrt x + 1}}{{x + 2\sqrt x + 1}} - \dfrac{{\sqrt x - 2}}{{x - 1}}} \right).\dfrac{{\sqrt x + 1}}{{\sqrt x }}\)

\(= \left( {\dfrac{{\sqrt x + 1}}{{{{\left( {\sqrt x + 1} \right)}^2}}} - \dfrac{{\sqrt x - 2}}{{x - 1}}} \right)\dfrac{{\sqrt x + 1}}{{\sqrt x }}\)

\(= \left( {\dfrac{{\sqrt x - 1 - \sqrt x + 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}} \right)\dfrac{{\sqrt x + 1}}{{\sqrt x }}\)

\(= \dfrac{1}{{\left( {\sqrt x - 1} \right)\sqrt x }}\)

Copyright © 2021 HOCTAP247