A. \(\dfrac{{x\sqrt a }}{a}\)
B. \(\dfrac{{\sqrt 2 .x\sqrt a }}{a}\)
C. \(\dfrac{{2\sqrt 2 .x\sqrt a }}{a}\)
D. \(\dfrac{{\sqrt 2 .x\sqrt a }}{{2a}}\)
A. \(\dfrac{{{x^2}}}{y}\sqrt {xy}\)
B. \( - \dfrac{{{x^2}}}{y}\sqrt {xy} \)
C. \(\dfrac{x}{y}\sqrt {xy}\)
D. \(- \dfrac{x}{y}\sqrt {xy}\)
A. \( -2\sqrt 5 a\)
B. \( 2\sqrt 5 a\)
C. \(\sqrt 5 a\)
D. \( -\sqrt 5 a\)
A. x + y
B. x - y
C. y - x
D. x + 2y
A. \(N = \dfrac{{\sqrt 2 }}{{\sqrt x - 1}}\)
B. \(N = \dfrac{{\sqrt 2 }}{{\sqrt x + 1}}\)
C. \(N = \dfrac{{\sqrt 3 }}{{\sqrt x + 1}}\)
D. \(N = \dfrac{{\sqrt 3 }}{{\sqrt x - 1}}\)
A. 1
B. 2
C. 3
D. 4
A. \(\dfrac{1}{{\left( {\sqrt x + 1} \right)\sqrt x }}\)
B. \(\dfrac{1}{{\left( {\sqrt x - 1} \right)\sqrt x }}\)
C. \(\dfrac{1}{{\left( {\sqrt x - 2} \right)\sqrt x }}\)
D. \(\dfrac{1}{{\left( {\sqrt x +2} \right)\sqrt x }}\)
A. 1
B. 2
C. 3
D. 4
A. \( \dfrac{{3 - \sqrt 5 }}{2}\)
B. \(- \dfrac{{3 + \sqrt 5 }}{2}\)
C. \(- \dfrac{{3 - \sqrt 5 }}{2}\)
D. \(\dfrac{{3 + \sqrt 5 }}{2}\)
A. -5
B. -5
C. -3
D. -2
A. \(m\ne 1\)
B. \(m \ne -1\)
C. \(m \ne \pm 1\)
D. \(m \ne \pm 2.\)
A. m < 4
B. m < 5
C. m < 6
D. m < 7
A. Hàm số đã cho đồng biến trên R.
B. Hàm số đã cho nghich biến trên R.
C. Điểm A(1; 3) thuộc đồ thị hàm số .
D. Tất cả sai.
A. 0
B. 1
C. 2
D. 3
A. f(-2) < h(-1)
B. f(-2) ≤ h(-1)
C. f(-2) = h(-1)
D. f(-2) > h(-1)
A. 16
B. 8
C. 32
D. 64
A. 1
B. 3
C. 2
D. 4
A. 1
B. 2
C. 3
D. 4
A. \(\left\{ \begin{array}{l} x \in R\\ y = - 4 \end{array} \right.\)
B. \(\left\{ \begin{array}{l} x \in R\\ y = 4 \end{array} \right.\)
C. \(\left\{ \begin{array}{l} y \in R\\ x= -4 \end{array} \right.\)
D. \(\left\{ \begin{array}{l} y \in R\\ x = 4 \end{array} \right.\)
A. -2
B. 2
C. -1
D. 1
A. (4;5)
B. (12;20)
C. (5;4)
D. (20;12)
A. a = -b
B. a = 2b
C. b = -a
D. a - b = 0
A. 5
B. 1
C. 2
D. 4
A. 20
B. 21
C. 22
D. 23
A. Vàng: 3 cm3; Đồng 5,4 cm3
B. Vàng: 2,8 cm3; Đồng 5,6 cm3
C. Vàng: 4,2 cm3; Đồng 4,4 cm3
D. Vàng: 4 cm3; Đồng 4,4 cm3
A. 10 phút bơi và 20 phút chạy bộ
B. 15 phút bơi và 15 phút chạy bộ
C. 20 phút bơi và 10 phút chạy bộ
D. 25 phút bơi và 5 phút chạy bộ
A. 10 tuần
B. 9 tuần
C. 7 tuần
D. 6 tuần
A. Vận tốc xe taxi của An là 50km/h và vận tốc xe taxi của Bình là 60km/h.
B. Vận tốc xe taxi của An là 55km/h và vận tốc xe taxi của Bình là 65km/h.
C. Vận tốc xe taxi của An là 30km/h và vận tốc xe taxi của Bình là 40km/h.
D. Vận tốc xe taxi của An là 40km/h và vận tốc xe taxi của Bình là 50km/h.
A. \(x =- 4;x = 5.\)
B. \(x =- 4;x = - 5.\)
C. \(x = 4;x = 5.\)
D. \(x = 4;x = - 5.\)
A. \(\left[ \begin{array}{l}x = \dfrac{{-15 + \sqrt {337} }}{4}\\x = \dfrac{{15 - \sqrt {337} }}{4}\end{array} \right.\)
B. \(\left[ \begin{array}{l}x = \dfrac{{15 + \sqrt {337} }}{4}\\x = \dfrac{{15 - \sqrt {337} }}{4}\end{array} \right.\)
C. \(\left[ \begin{array}{l}x = \dfrac{{15 + \sqrt {337} }}{4}\\x = \dfrac{{-15 - \sqrt {337} }}{4}\end{array} \right.\)
D. \(\left[ \begin{array}{l}x = \dfrac{{-15 + \sqrt {337} }}{4}\\x = \dfrac{{-15 - \sqrt {337} }}{4}\end{array} \right.\)
A. x = -8
B. x = 8
C. Vô số nghiệm
D. Vô nghiệm
A. \(\left[ \begin{array}{l}x = \dfrac{{ 4 + \sqrt {38} }}{2}\\x = \dfrac{{ - 4 - \sqrt {38} }}{2}\end{array} \right.\)
B. \(\left[ \begin{array}{l}x = \dfrac{{ - 4 + \sqrt {38} }}{2}\\x = \dfrac{{ - 4 + \sqrt {38} }}{2}\end{array} \right.\)
C. \(\left[ \begin{array}{l}x = \dfrac{{ - 4 + \sqrt {38} }}{2}\\x = \dfrac{{ - 4 - \sqrt {38} }}{2}\end{array} \right.\)
D. \(\left[ \begin{array}{l}x = \dfrac{{ - 4 - \sqrt {38} }}{2}\\x = \dfrac{{ - 4 - \sqrt {38} }}{2}\end{array} \right.\)
A. Tiếp xúc với tất cả các cạnh của đa giác đó
B. Đi qua tất cả các đỉnh của đa giác đó
C. Cắt tất cả các cạnh của đa giác đó
D. Đi qua tâm của đa giác đó
A. d = R - R'
B. d > R + R'
C. R -R' < d < R + R'
D. d =R + R'
A. thang cân
B. bình hành
C. tứ giác
D. thoi
A. d⊥OA tại A và A∈(O)
B. d⊥OA
C. A∈(O)
D. d//OA
A. Song song với bán kính đi qua điểm đó
B. Vuông góc với bán kính đi qua điểm đó
C. Song song với bán kính đường tròn
D. Vuông góc với bán kính bất kì
A. PQ luôn tiếp xúc với một đường tròn cố định
B. PQ không tiếp xúc với một đường tròn cố định nào
C. PQ=a
D. PQ=OP
A. AD là tiếp tuyến của đường tròn.
B. \(\widehat {ACB} = {90^ \circ }\)
C. AD cắt đường tròn (O;R) tại hai điểm phân biệt
D. Cả A, B đều đúng.
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247