Rút gọn: \(\left( {\dfrac{{a\sqrt a + b\sqrt b }}{{\sqrt a + \sqrt b }} - \sqrt {ab} } \right){\left( {\dfrac{{\sqrt a + \sqrt b }}{{a - b}}} \right)^2}\)

Câu hỏi :

Rút gọn: \(\left( {\dfrac{{a\sqrt a + b\sqrt b }}{{\sqrt a + \sqrt b }} - \sqrt {ab} } \right){\left( {\dfrac{{\sqrt a + \sqrt b }}{{a - b}}} \right)^2}\) với \(a \ge 0,\,\,b \ge 0,\,\,a \ne b\)

A. 1

B. 2

C. 3

D. 4

* Đáp án

A

* Hướng dẫn giải

 \(\left( {\dfrac{{a\sqrt a + b\sqrt b }}{{\sqrt a + \sqrt b }} - \sqrt {ab} } \right){\left( {\dfrac{{\sqrt a + \sqrt b }}{{a - b}}} \right)^2}\)

\(=\left[ {\dfrac{{{a^2} + b\sqrt {ab} - a\sqrt {ab} - {b^2} - \sqrt {ab} \left( {a - b} \right)}}{{a - b}}} \right]{\left( {\dfrac{{\sqrt a + \sqrt b }}{{a - b}}} \right)^2}\)

\(= \left[ {\dfrac{{{a^2} - {b^2} - 2\left( {a - b} \right)\sqrt {ab} }}{{a - b}}} \right]{\left( {\dfrac{{\sqrt a + \sqrt b }}{{a - b}}} \right)^2}\)

\(= \left[ {\dfrac{{\left( {a + b} \right)\left( {a - b} \right) - 2\left( {a - b} \right)\sqrt {ab} }}{{a - b}}} \right]{\left( {\dfrac{{\sqrt a + \sqrt b }}{{a - b}}} \right)^2}\)

\(= \dfrac{{\left( {a + b - 2\sqrt {ab} } \right)\left( {a - b} \right)}}{{a - b}} \cdot {\left( {\dfrac{{\sqrt a + \sqrt b }}{{a - b}}} \right)^2}\)

\(= \dfrac{{{{\left( {\sqrt a - \sqrt b } \right)}^2}{{\left( {\sqrt a + \sqrt b } \right)}^2}}}{{{{\left( {a - b} \right)}^2}}}\)

\(= \dfrac{{{{\left( {a - b} \right)}^2}}}{{{{\left( {a - b} \right)}^2}}} = 1\)

Copyright © 2021 HOCTAP247