Nếu mở riêng từng vòi thì thời gian vòi thứ nhất chảy đầy bể là bao nhiêu ?

Câu hỏi :

Nếu hai vòi nước cùng chảy vào một bể cạn (không có nước) thì bể sẽ đầy trong 1 giờ 20 phút. Nếu mở vòi thứ nhất trong 10 phút và vòi thứ hai trong 12 phút thì chỉ được \(\dfrac{2}{{15}}\) bể nước. Hỏi nếu mở riêng từng vòi thì thời gian vòi thứ nhất chảy đầy bể là bao nhiêu ? 

A. 360 phút

B. 240 phút

C. 120 phút

D. 480 phút

* Đáp án

C

* Hướng dẫn giải

Giả sử khi chảy riêng  vòi thứ nhất chảy đầy bể trong \(x\) (phút) và vòi thứ hai chảy đầy bể trong \(y\) (phút). Điều kiện là: \(x;y > 80\).

Vòi thứ nhất chảy một mình trong 1 phút được \(\dfrac{1}{x}\) bể 

Vòi thứ hai chảy một mình trong 1 phút được \(\dfrac{1}{y}\) bể

Nên hai vòi cùng chảy trong 1 phút được \(\dfrac{1}{x} + \dfrac{1}{y}\) (bể)

Vì hai vòi cũng chảy vào bể cạn thì sau \(1\) giờ 20 phút \( = 80\) phút thì đầy bể nên ta có phương trình

\(\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{{80}}\)   (1)

Từ giả thiết mở vòi thứ nhất trong 10 phút và mở  vòi thứ hai trong 12  phút thì được \(\dfrac{2}{{15}}\) bể nước nên ta có phương trình  \(10.\dfrac{1}{x} + 12.\dfrac{1}{y} = \dfrac{2}{{15}}\)  (2)

Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{{80}}\\10.\dfrac{1}{x} + 12.\dfrac{1}{y} = \dfrac{2}{{15}}\end{array} \right.\)

Đặt \(\dfrac{1}{x} = u;\dfrac{1}{y} = v\) ta có hệ

\(\left\{ \begin{array}{l}u + v = \dfrac{1}{{80}}\\10u + 12v = \dfrac{2}{{15}}\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}u = \dfrac{1}{{80}} - v\\10\left( {\dfrac{1}{{80}} - v} \right) + 12v = \dfrac{2}{{15}}\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}u = \dfrac{1}{{80}} - v\\\dfrac{1}{8} - 10v + 12v = \dfrac{2}{{15}}\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}u = \dfrac{1}{{80}} - v\\2v = \dfrac{1}{{120}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}v = \dfrac{1}{{240}}\\u = \dfrac{1}{{120}}\end{array} \right.\,\left( {\,thỏa\, mãn} \right)\)

Thay về cách đặt, ta được

\(x=\dfrac{1}{u} = 120 (\,thỏa\, mãn)\) và \({y} = \dfrac{1}{v}=240 (\,thỏa\, mãn)\) 

Vậy vòi thứ nhất chảy riêng trong \(120\) phút thì đầy bể, vòi thứ hai chảy riêng trong \(240\) phút thì đầy bể.

Copyright © 2021 HOCTAP247