Phương trình \({\left( {x + \dfrac{1}{x}} \right)^2} - 4\left( {x + \dfrac{1}{x}} \right) + 3 = 0\) có số nghiệm là

Câu hỏi :

Số nghiệm của phương trình \({\left( {x + \dfrac{1}{x}} \right)^2} - 4\left( {x + \dfrac{1}{x}} \right) + 3 = 0\) là:

A. \(x = \dfrac{{4 + \sqrt 5 }}{2};x = \dfrac{{4 - \sqrt 5 }}{2}\)

B. \(x = \dfrac{{3 + \sqrt 5 }}{2};x = \dfrac{{4 - \sqrt 5 }}{2}\)

C. \(x = \dfrac{{4 + \sqrt 5 }}{2};x = \dfrac{{3 - \sqrt 5 }}{2}\)

D. \(x = \dfrac{{3 + \sqrt 5 }}{2};x = \dfrac{{3 - \sqrt 5 }}{2}\)

* Đáp án

D

* Hướng dẫn giải

ĐK: \(x \ne 0.\)

Đặt \(x + \dfrac{1}{x} = t\), ta thu được phương trình \({t^2} - 4t + 3 = 0\)

Phương trình trên có \(a + b + c = 1 + \left( { - 4} \right) + 3 = 0\) nên có hai nghiệm \(t = 1;t = 3.\)

+ Với \(t = 1 \Rightarrow x + \dfrac{1}{x} = 1\)\( \Rightarrow {x^2} - x + 1 = 0\) . Xét \(\Delta  = {\left( { - 1} \right)^2} - 4.1.1 =  - 3 < 0\) nên phương trình vô nghiệm.

+ Với \(t = 3 \Rightarrow x + \dfrac{1}{x} = 3 \)\(\Rightarrow {x^2} - 3x + 1 = 0\) (*)

Phương trình (*) có \(\Delta  = {\left( { - 3} \right)^2} - 4.1.1 = 5 > 0\) nên có hai nghiệm \(\left[ \begin{array}{l}x = \dfrac{{3 + \sqrt 5 }}{2}\\x = \dfrac{{3 - \sqrt 5 }}{2}\end{array} \right.\) (thỏa mãn)

Vậy phương trình đã cho có hai nghiệm \(x = \dfrac{{3 + \sqrt 5 }}{2};x = \dfrac{{3 - \sqrt 5 }}{2}\)

Copyright © 2021 HOCTAP247