Nghiệm của phương trình \({\left( {{x^2} - 4x + 2} \right)^2} + {x^2} - 4x - 4 = 0\) là:

Câu hỏi :

Nghiệm của phương trình \({\left( {{x^2} - 4x + 2} \right)^2} + {x^2} - 4x - 4 = 0\) là:

A. x = 0; x = 2.

B. x = 0; x = 3.

C. x = 0; x = 4.

D. x = 0; x = 5.

* Đáp án

C

* Hướng dẫn giải

\(\begin{array}{l}{\left( {{x^2} - 4x + 2} \right)^2} + {x^2} - 4x - 4 = 0\\ \Leftrightarrow {\left( {{x^2} - 4x + 2} \right)^2} + {x^2} - 4x + 2 - 6 = 0\end{array}\)

Đặt \(t = {x^2} - 4x + 2\) ta có \({t^2} + t - 6 = 0\) có \(\Delta  = {1^2} - 4.1.\left( { - 6} \right) = 25 > 0 \Rightarrow \sqrt \Delta   = 5\) nên có hai nghiệm \({t_1} = \dfrac{{ - 1 + 5}}{2} = 2;\) \({t_2} = \dfrac{{ - 1 - 5}}{2} =  - 3\)

+ Với \({t_1} = 2\) ta có \({x^2} - 4x + 2 = 2\)\( \Leftrightarrow {x^2} - 4x = 0 \)\(\Leftrightarrow x\left( {x - 4} \right) = 0 \)\(\Leftrightarrow \left[ \begin{array}{l}x = 0\\x - 4 = 0\end{array} \right. \)\(\Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 4\end{array} \right.\)

+ Với \({t_2} =  - 3\)ta có \({x^2} - 4x + 2 =  - 3 \Leftrightarrow {x^2} - 4x + 5 = 0\) có \(\Delta  = {\left( { - 4} \right)^2} - 4.1.5 =  - 4 < 0\) nên phương trình này vô nghiệm.

Vậy phương trình đã cho có nghiệm x = 0; x = 4.

Copyright © 2021 HOCTAP247