A. \({x_1} = \dfrac{{ 1 + \sqrt 5 }}{2};{x_2} = \dfrac{{ - 1 - \sqrt 5 }}{2}\).
B. \({x_1} = \dfrac{{ - 1 + \sqrt 5 }}{2};{x_2} = \dfrac{{ - 1 - \sqrt 5 }}{2}\).
C. \({x_1} = \dfrac{{ - 1 + \sqrt 5 }}{2};{x_2} = \dfrac{{ 1 - \sqrt 5 }}{2}\).
D. \({x_1} = \dfrac{{ 1 + \sqrt 5 }}{2};{x_2} = \dfrac{{ 1 - \sqrt 5 }}{2}\).
B
Đặt \(t = {x^2} + x\) ta có \(3{t^2} - 2t - 1 = 0\)
Vì phương trình \(3{t^2} - 2t - 1 = 0\) có \(a + b + c = 3 + \left( { - 2} \right) + \left( { - 1} \right) = 0\) nên có hai nghiệm \({t_1} = 1;{t_2} = - \dfrac{1}{3}\)
+ Với \({t_1} = 1\) ta có \({x^2} + x = 1\) hay \({x^2} + x - 1 = 0\) có \(\Delta = {1^2} + 4.1.1 = 5 > 0\) nên phương trình có hai nghiệm \({x_1} = \dfrac{{ - 1 + \sqrt 5 }}{2};{x_2} = \dfrac{{ - 1 - \sqrt 5 }}{2}\)
+ Với \({t_2} = - \dfrac{1}{3}\)ta có \({x^2} + x = - \dfrac{1}{3}\) hay \(3{x^2} + 3x + 1 = 0\)
\(\Delta = {3^2} - 4.3.1 = - 3 < 0\) nên phương trình này vô nghiệm.
Vậy phương trình đã cho hai nghiệm \({x_1} = \dfrac{{ - 1 + \sqrt 5 }}{2};{x_2} = \dfrac{{ - 1 - \sqrt 5 }}{2}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247